Mo Logo [Home] [Lexikon] [Aufgaben] [Tests] [Kurse] [Begleitmaterial] [Hinweise] [Mitwirkende] [Publikationen]

Mathematik-Online-Aufgabensammlung:

Aufgabe 101 Variante 1: Grenzwert von Reihen


A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

[vorherige] [Variante 1] [nächste]
Variante   

Zeigen Sie, dass die folgenden Reihen die angegebenen Grenzwerte haben:

a) $ {\displaystyle \sum_{n=1}^{\infty}\: \frac{(-3)^n}{4^n}
\;=\; -\frac{3}{7} }$ b) $ {\displaystyle \sum_{n=0}^{\infty}\: \frac{3^n + (-2)^n}{6^n}
\;=\; \frac{11}{4} }$
c) $ {\displaystyle \sum_{n=1}^{\infty}\: \frac{1}{4n^2 - 1}
\;=\; \frac{1}{2} }$ d) $ {\displaystyle \sum_{n=1}^{\infty}\: \frac{1}{n\,(n+1)\,(n+2)}
\;=\; \frac{1}{4} }$
e) $ {\displaystyle \sum_{n=0}^{\infty}\:
\left(\frac{1+{\rm {i}}}{2}\right)^n \;=\; 1+{\rm {i}} }$ f) $ {\displaystyle \sum_{n=1}^{\infty}\: \frac{\cos n\pi}{n}
\;=\; -{\rm {ln}}\,2 }$

(Aus: Werner, WS 1992/93)

[Verweise]

  automatisch erstellt am 13. 12. 2007