Mo Logo [Home] [Lexikon] [Aufgaben] [Tests] [Kurse] [Begleitmaterial] [Hinweise] [Mitwirkende] [Publikationen]

Mathematik-Online-Lexikon:

Matrix-Operationen


A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Übersicht

Matrizen können mit Hilfe der Operatoren +, -, * bzw. ^ addiert, subtrahiert, multipliziert bzw. potenziert werden. Die Größen der Matrizen müssen dabei so gewählt werden, dass die Operationen im mathematischen Sinne durchführbar sind. Beispielsweise muss im Fall der Matrixmultiplikation die Spaltenzahl der ersten Matrix mit der Zeilenzahl der zweiten Matrix übereinstimmen. Abweichend davon erfolgt bei +, - und * die Verknüpfung elementweise, wenn einer der Operanden ein Skalar ist.

Die Lösung X des linearen Gleichungssystems AX=B bzw. XA=B lässt sich durch X=A\B bzw. X=B/A bestimmen. Im Fall über- bzw. unterbestimmter Gleichungssystem wird dabei das zugehörige Ausgleichsproblem gelöst.

Die Operatoren .*, .^, ./, .\ führen eine elementweise Multiplikation, Potenzierung, Division bzw. Linksdivision durch. D.h. die korrespondierenden Elemente der Operanden werden durch die jeweilige skalare Operation verknüpft. Dabei müssen die Größen der verknüpften Matrizen übereinstimmen bzw. ein Operand ein Skalar sein.

Elementare Funktionen wie die trigonometrischen Funktionen, Exponentialfunktionen, Rundungsfunktionen, usw. operieren elementweise auf Matrizen.

(Autoren: Hörner/Wipper)

siehe auch:


[Downloads] [Beispiele]

  automatisch erstellt am 27.  3. 2007