Mo Logo [Home] [Lexikon] [Aufgaben] [Tests] [Kurse] [Begleitmaterial] [Hinweise] [Mitwirkende] [Publikationen]

Mathematik-Online-Lexikon:

Ableitung einer Differentialgleichung nach Anfangsbedingungen


A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Übersicht

Das Anfangswertproblem

$\displaystyle u^\prime = f(t,u),\quad u(t_0) = a\,,
$

lässt sich für stetig differenzierbares $ f$ nach $ (a_1,\ldots,a_n)^{\operatorname t}$ partiell ableiten. Man erhält

$\displaystyle u_a^\prime = f_u(t,u)u_a,\quad u_a(t_0) = E\,,
$

mit

$\displaystyle u_a = \left(\frac{\partial u}{\partial a_1},\ldots,
\frac{\partial u}{\partial a_n}\right)
$

und $ E$ der $ (n\times n)$ Einheitsmatrix.
[Beispiele] [Verweise]

  automatisch erstellt am 19.  8. 2013