Mo Logo [Home] [Lexikon] [Aufgaben] [Tests] [Kurse] [Begleitmaterial] [Hinweise] [Mitwirkende] [Publikationen]

Mathematik-Online-Lexikon:

Spezielle komplexe Reihen und Produkte


A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Übersicht

$\displaystyle \frac{\pi^2}{\sin^2(\pi z)}$ $\displaystyle = \sum_{n=-\infty}^\infty \frac{1}{(z-n)^2}$    
$\displaystyle \pi\cot(\pi z)$ $\displaystyle = \sum_{n=-\infty}^\infty \frac{1}{z-n}= \frac{1}{z}+\sum_{n=1}^\infty \frac{2z}{z^2-n^2}$    
$\displaystyle \frac{\pi}{\sin(\pi z)}$ $\displaystyle = \sum_{n=-\infty}^\infty \frac{(-1)^n}{z-n} = \frac{1}{z}+\sum_{n=1}^\infty (-1)^n\frac{2z}{z^2-n^2}$    
$\displaystyle \sin(\pi z)$ $\displaystyle = \pi z \prod_{n=1}^\infty\left(1-\frac{z^2}{n^2}\right)$    
$\displaystyle \Gamma(z)$ $\displaystyle = \frac{e^{-\gamma z}}{z}\prod_{n=1}^\infty \left(1+\frac{z}{n}\right)^{-1}e^{z/n}$    
$\displaystyle \frac{\Gamma^2(n+1)}{\Gamma(n+x\mathrm{i}+1)\Gamma(n-x\mathrm{i}+1)}$ $\displaystyle =\prod_{k=1}^\infty \left(1+\frac{x^2}{(n+k)^2}\right)$    
$\displaystyle \frac{\Gamma\left(\frac{n}{2}\right)}{\Gamma\left(\frac{n+1}{2}\right)} \frac{\cosh(\pi n\sqrt{3})-\cos(\pi n)}{2^{n+2}\pi^{3/2}n}$ $\displaystyle = \prod_{k=1}^\infty \left(1+\left(\frac{n}{k}\right)^3\right) \prod_{k=1}^\infty \left(1+3\left(\frac{n}{n+2k}\right)^2\right)$    


[Verweise]

  automatisch erstellt am 19.  8. 2013