Mo Logo [Home] [Lexikon] [Aufgaben] [Tests] [Kurse] [Begleitmaterial] [Hinweise] [Mitwirkende] [Publikationen]

Mathematik-Online-Lexikon:

Konfidenzintervall (Normalverteilung)


A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Übersicht

Eine Größe $ \mbox{$X$}$ sei normalverteilt mit bekannter Varianz $ \mbox{$\sigma^2=100$}$ und unbekanntem Erwartungswert $ \mbox{$\mu$}$. Für ein Experiment vom Umfang $ \mbox{$n=10000$}$ wird eine Abweichung um bis zu $ \mbox{$0.1$}$ vom empirischen Mittelwert als akzeptabel erachtet. Bestimme das erreichte Konfidenzniveau..

Äquivalent zu

$ \mbox{$\displaystyle
P(\left\vert\sqrt{n}\frac{\bar{X}_n-\mu}{\sigma}\right\vert\leq
\frac{l\sqrt{n}}{2\sigma}) \geq 1-\alpha,
$}$
wobei $ \mbox{$1-\alpha$}$ das Konfidenzniveau angibt, ist mit $ \mbox{$l=0.2$}$ und $ \mbox{$n=10000$}$
$ \mbox{$\displaystyle
1-\Phi_{0,1}\left(\frac{0.2\sqrt{10000}}{2\cdot\sqrt{100}}\right) \;\leq\; \frac{\alpha}{2}.
$}$
Aus einer Tabelle entnimmt man $ \mbox{$\Phi_{0,1}(1) \approx 0.8413$}$ und erhält für das Konfidenzniveau $ \mbox{$1-\alpha\approx 0.3174$}$.

(Autoren: Künzer/Meister/Nebe)

siehe auch:


  automatisch erstellt am 25.  1. 2006