Mo Logo [Home] [Lexikon] [Aufgaben] [Tests] [Kurse] [Begleitmaterial] [Hinweise] [Mitwirkende] [Publikationen]

Mathematik-Online-Aufgabensammlung:

Interaktive Aufgabe 1199: Lösbarkeit linearer Gleichungssysteme, Multiple Choice


A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Es sei $ K$ ein Körper und $ A \in K^{m \times n}$. Entscheiden Sie, ob die folgenden Aussagen wahr oder falsch sind.
a)
Das lineare Gleichungssystem $ Ax = 0$ ist nur lösbar, falls $ \operatorname{rg}(A)=m$.

b)
Das lineare Gleichungssystem $ Ax = b$ ist genau dann lösbar, wenn der Rang von $ A$ mit dem Rang der erweiterten Koeffizientenmatrix übereinstimmt.

c)
Ist $ m=n$ und $ \operatorname{det}(A) \not= 0$, so ist das lineare Gleichungssystem $ Ax = b$ eindeutig lösbar.

d)
Ist $ K$ ein unendlicher Körper, so hat jedes lineare Gleichungssystem der Form $ Ax = b$ unendlich viele Lösungen.

Antwort:

  wahr falsch
a)
b)
c)
d)

   
(Aus: Vorbereitungskurs LAAG)

siehe auch:


  automatisch erstellt am 10.  8. 2017