Mo Logo [Home] [Lexikon] [Aufgaben] [Tests] [Kurse] [Begleitmaterial] [Hinweise] [Mitwirkende] [Publikationen]

Mathematik-Online-Aufgabensammlung:

Interaktive Aufgabe 1374 Variante 1: Eigenwerte und Eigenvektoren, 2x2


A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

[vorherige] [Variante 1] [nächste]
Variante   

Gegeben sie die Matrix

$\displaystyle A= \left( \begin{array}{rr} 3&-2 \\ -\frac{3}{2}&5 \end{array} \right)$

Berechnen Sie die Eigenwerte $ \lambda_1$ und $ \lambda_2$ dieser Matrix und zu jedem Eigenwert einen normierten Eigenvektor mit positivem ersten Wert.

Antwort:

$ \lambda_1=$        
$ v_1=$ $ \frac{1}{\sqrt{5}}$ $ \left( \rule{0pt}{4ex}\right.$
$ \left. \rule{0pt}{4ex}\right)$  

$ \lambda_2=$        
$ v_2=$ $ \frac{1}{\sqrt{13}}$ $ \left( \rule{0pt}{4ex}\right.$
$ \left. \rule{0pt}{4ex}\right)$  

( $ \lambda_1 < \lambda_2$)
  

siehe auch:


[Lösungen]

  automatisch erstellt am 10.  8. 2017