Mo Logo [Home] [Lexikon] [Aufgaben] [Tests] [Kurse] [Begleitmaterial] [Hinweise] [Mitwirkende] [Publikationen]

Mathematik-Online-Aufgabensammlung:

Interaktive Aufgabe 1700: Aussagen zur Linearen Optimierung


A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Im $ \mathbb{R}^2$ sei ein beschränkter Bereich $ B$ von Punkten $ (x,y)$ mit ganzzahligen Koordinaten durch lineare Ungleichungen gegeben. Gesucht ist das Maximum der Gewinnfunktion $ G(x,y)=2x+3y$. Geben Sie für jede der folgenden Aussagen an, ob diese wahr oder falsch ist:

a) Ein Punkt in $ B$ mit größtmöglichem $ x$-Wert gibt den maximalen Gewinn. wahr , falsch
b) Ein Punkt in $ B$ mit größtmöglichem $ y$-Wert gibt den maximalen Gewinn. wahr , falsch
c) Verschiebt man die Gerade $ y=-\frac23\,x$ möglichst weit parallel zur $ y$-Achse nach oben, solange noch ein Punkt aus $ B$ daraufliegt, so erhält man einen Punkt mit maximalem Gewinn. wahr , falsch
d) Verschiebt man die Gerade $ y=-\frac32\,x$ möglichst weit parallel zur $ y$-Achse nach oben, solange noch ein Punkt aus $ B$ daraufliegt, so erhält man einen Punkt mit maximalem Gewinn. wahr , falsch
e) Der größte Gewinn wird immer auf einem Eckpunkt von $ B$ erzielt. wahr , falsch
f) Lässt man auch nichtganzzahlige Werte von $ x$ und $ y$ zu, so wird der größte Gewinn immer auf einem Eckpunkt von $ B$ erzielt. wahr , falsch

   

(Autor: Schülerzirkel)

siehe auch:


  automatisch erstellt am 10.  8. 2017