Mo Logo [Home] [Lexikon] [Aufgaben] [Tests] [Kurse] [Begleitmaterial] [Hinweise] [Mitwirkende] [Publikationen]

Mathematik-Online-Aufgabensammlung:

Interaktive Aufgabe 1788 Variante 20: Jacobi Matrix


A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

[vorherige] [Variante 20] [nächste]
Variante   

Gegeben seien die Abbildungen

$\displaystyle f \colon \mathbb{R}^3 \to \mathbb{R}^{2},\, \begin{pmatrix}x\\ y\...
...rix}\mapsto \begin{pmatrix}6xy \sin(3\pi z)+7\\ 2\sin(-2\pi xyz)-4\end{pmatrix}$    und $\displaystyle \quad g \colon \mathbb{R}^2 \to \mathbb{R}^{2},\, \begin{pmatrix}x\\ y\end{pmatrix}\mapsto \begin{pmatrix}6x+3y+7\\ 2x-2y-4\end{pmatrix}\,.$    

(a)
Bestimmen Sie $ \mathrm{J}f(1,2,3)$ und $ \mathrm{J}g(1,1)$.

Antwort:

$ \mathrm{J}f(1,2,3) = \displaystyle \pi \left(\rule{0pt}{5ex}\right.$
$ \left.\rule{0pt}{5ex}\right)$
,
$ \mathrm{J}g(1,1) = \left(\rule{0pt}{5ex}\right.$
$ \left.\rule{0pt}{5ex}\right)$

(b)
Bestimmen Sie die Anzahl der Spalten $ n$ von $ \mathrm{J}(g \circ f)(1,2,3)$ und geben Sie den Wert $ j_{11}$ des ersten Eintrags der ersten Zeile von $ \mathrm{J}(g \circ f)(1,2,3)$ an.

Antwort:

$ n = $ ,          $ j_{11} = \displaystyle\pi $

(c)
Bestimmen Sie die total differenzierbare Funktion $ h\colon \mathbb{R}^2 \to \mathbb{R}^{2}$ so, dass

$\displaystyle \mathrm{J}h(x,y) = \begin{pmatrix}6&6y\\ 4xy&2x^2 \end{pmatrix}$    und $\displaystyle \quad h(1,1) = \begin{pmatrix}11\\ 0 \end{pmatrix} \quad\forall\, (x,y) \in \mathbb{R}^2.$    

Geben Sie dann $ h(-1,2)$ und $ \mathrm{J}(g \circ h)(-1,2)$ an.

Antwort:

$ h(-1,2)= \left(\rule{0pt}{5ex}\right.$
$ \left.\rule{0pt}{5ex}\right)$
,
$ \mathrm{J}(g \circ h)(-1,2) = \left(\rule{0pt}{5ex}\right.$
$ \left.\rule{0pt}{5ex}\right)$


  

[Verweise]

  automatisch erstellt am 10.  8. 2017