Mo Logo [Home] [Lexikon] [Aufgaben] [Tests] [Kurse] [Begleitmaterial] [Hinweise] [Mitwirkende] [Publikationen]

Mathematik-Online-Aufgabensammlung:

Interaktive Aufgabe 466: Parametrisierung und Volumen eines Körpers, Fluss durch die Oberfläche


A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Gegeben sei der Körper         $ \displaystyle{K:\quad x^2+y^2 \le 1,\quad 0 \le z \le x, \quad 0 \le x\,.}$

a)
Beschreiben Sie den Körper $ K$ in Zylinderkoordinaten $ (\rho,\varphi,z)$.
b)
Berechnen Sie das Volumen $ V$ des Körpers $ K$.
c)
Berechnen Sie den Fluss $ \Phi$ des Vektorfeldes $ \vec{F}=(xy^2,yx^2,x^2y^2)^\mathrm{t}$ durch die Oberfläche von $ K$ von innen nach außen.

Antwort:

$ V=$, $ \Phi=$

(auf vier Dezimalstellen runden)


   

(Autor: Klaus Höllig)

[Verweise]

  automatisch erstellt am 10.  8. 2017