Eigenschaften der Gruppe G12 mit Hilfe von GAP



Permutationsdarstellung der G12

	pgr12:=function()
	local d,g,sg,p;
	d:=FreeGroup("a","b","c");
	g:=d/[d.1^2,d.2^2,d.3^2,d.1*d.2*d.3*d.1*d.2*d.1*d.3*d.2,d.1*d.2*d.3*d.1*d.3*d.2*d.1*d.3];
	sg:=Subgroup(g,[g.1]);
	p:=Image(ActionHomomorphism(g,RightTransversal(g,sg),OnRight));
	return p;
	end;
	

Ergebnisse

        
	G12:=pgr12();

	gap> Size(G12);
	48
	
	gap> N12:=NormalSubgroups(G12);;

	gap> NTSize(N12);
	Groesse des 1. Normalteilers: 1
	Groesse des 2. Normalteilers: 2
	Groesse des 3. Normalteilers: 8
	Groesse des 4. Normalteilers: 24
	Groesse des 5. Normalteilers: 48

	gap> Centre(G12);
	Group([ ( 1,22)( 2,16)( 3,20)( 4, 8)( 5,21)( 6,13)( 7,19)( 9,17)(10,24)(11,15)
	    (12,18)(14,23) ])
	
	gap> Size(Centre(G12));
	2
	
	gap> IsSolvable(G12);
	true
	
	gap> CompositionSeries(G12);
	[ <permutation group of size 48 with 5 generators>, 
	  <permutation group of size 24 with 4 generators>, 
	  Group([ ( 1,11,22,15)( 2,23,16,14)( 3,10,20,24)( 4, 7, 8,19)( 5, 6,21,13)
	        ( 9,12,17,18), ( 1,17,22, 9)( 2, 5,16,21)( 3, 4,20, 8)( 6,23,13,14)
	        ( 7,10,19,24)(11,12,15,18), ( 1,22)( 2,16)( 3,20)( 4, 8)( 5,21)( 6,13)
	        ( 7,19)( 9,17)(10,24)(11,15)(12,18)(14,23) ]), 
	  Group([ ( 1,17,22, 9)( 2, 5,16,21)( 3, 4,20, 8)( 6,23,13,14)( 7,10,19,24)
	        (11,12,15,18), ( 1,22)( 2,16)( 3,20)( 4, 8)( 5,21)( 6,13)( 7,19)
	        ( 9,17)(10,24)(11,15)(12,18)(14,23) ]), 
	  Group([ ( 1,22)( 2,16)( 3,20)( 4, 8)( 5,21)( 6,13)( 7,19)( 9,17)(10,24)
	        (11,15)(12,18)(14,23) ]), Group(()) ]
	

Charaktertafel

	gap> ct12:=CharacterTable(G12);
	CharacterTable( Group(
	[ ( 2, 4)( 3, 6)( 5,10)( 7,14)( 8,16)( 9,18)(11,15)(12,17)(13,20)(19,23)
	    (21,24), ( 1, 2)( 3, 7)( 4, 8)( 5,11)( 6,12)( 9,14)(13,18)(15,21)(16,22)
	    (17,23)(19,20), ( 1, 3)( 2, 5)( 4, 9)( 6,13)( 7,15)( 8,17)(10,12)(11,19)
	    (16,21)(18,24)(20,22) ]) )
	
	gap> Display(ct12);
	CT1

	     2  4  2  1  3  3  1  3  4
	     3  1  .  1  .  .  1  .  1
	
	       1a 2a 6a 8a 8b 3a 4a 2b
	    2P 1a 1a 3a 4a 4a 3a 2b 1a
	    3P 1a 2a 2b 8a 8b 1a 4a 2b
	    5P 1a 2a 6a 8b 8a 3a 4a 2b
	    7P 1a 2a 6a 8b 8a 3a 4a 2b
	
	X.1     1  1  1  1  1  1  1  1
	X.2     1 -1  1 -1 -1  1  1  1
	X.3     2  . -1  .  . -1  2  2
	X.4     2  .  1  A -A -1  . -2
	X.5     2  .  1 -A  A -1  . -2
	X.6     3 -1  .  1  1  . -1  3
	X.7     3  1  . -1 -1  . -1  3
	X.8     4  . -1  .  .  1  . -4
	
	A = -E(8)-E(8)^3
	  = -ER(-2) = -i2
	
	gap> quit;