Eigenschaften der Gruppe G14 mit Hilfe von GAP



Permutationsdarstellung der G14

	pgr14:=function()
	local z,g,sg,p;
	z:=FreeGroup("a","b");
	g:=z/[z.1^3,z.2^2,z.1*z.2*z.1*z.2*z.1*z.2*z.1*z.2*z.1^2*z.2*z.1^2*z.2*z.1^2*z.2*z.1^2*z.2];
	sg:=Subgroup(g,[g.1]);
	p:=Image(ActionHomomorphism(g,RightTransversal(g,sg),OnRight));
	return p;
	end;
	

Ergebnisse

	G14:=pgr14();

	gap> Size(G14);
	144

	gap> N14:=NormalSubgroups(G14);;

	gap> NTSize(N14);
	Groesse des 1. Normalteilers: 1
	Groesse des 2. Normalteilers: 2
	Groesse des 3. Normalteilers: 3
	Groesse des 4. Normalteilers: 6
	Groesse des 5. Normalteilers: 8
	Groesse des 6. Normalteilers: 24
	Groesse des 7. Normalteilers: 24
	Groesse des 8. Normalteilers: 48
	Groesse des 9. Normalteilers: 72
	Groesse des 10. Normalteilers: 144
	
	gap> Centre(G14);
	Group(
	[ ( 1,32,48,47,45,19)( 2,26,46,44,42,14)( 3,15,40,39,36,18)( 4,20,43,41,37,10)
	    ( 5,11,34,33,30,25)( 6,27,38,35,31, 7)( 8,29,28,24,22, 9)(12,23,21,17,16,
	     13) ])
	
	gap> Size(Centre(G14));
	6
	
	gap> IsSolvable(G14);
	true
	
	gap> CompositionSeries(G14);
	[ <permutation group of size 144 with 6 generators>, 
	  <permutation group of size 72 with 5 generators>, 
	  <permutation group of size 24 with 4 generators>, 
	  <permutation group of size 8 with 3 generators>, 
	  <permutation group of size 4 with 2 generators>, 
	  Group([ ( 1,47)( 2,44)( 3,39)( 4,41)( 5,33)( 6,35)( 7,38)( 8,24)( 9,28)
	        (10,43)(11,30)(12,17)(13,21)(14,46)(15,36)(16,23)(18,40)(19,48)(20,37)
	        (22,29)(25,34)(26,42)(27,31)(32,45) ]), Group(()) ]
	

Charaktertafel

	gap> ct14:=CharacterTable(G14);
	CharacterTable( <permutation group of size 144 with 2 generators>, )

	gap> Display(ct14);
	CT1

	      2  4   1   1  2   3   3   3  1   3  3   2   2  3   4   1  3  1   1   4
	      3  2   2   2  1   1   1   1  2   1  1   1   1  1   2   2  1  2   2   2
	
	        1a  3a  3b 2a 24a 24b 12a 6a 12b 8a  6b  6c 8b  6d  6e 4a 3c  6f  6g
	     2P 1a  3b  3a 1a 12a 12b  6d 3c  6g 4a  3d  3e 4a  3d  3a 2b 3c  3b  3e
	     3P 1a  1a  1a 2a  8a  8b  4a 2b  4a 8a  2a  2a 8b  2b  2b 4a 1a  2b  2b
	     5P 1a  3b  3a 2a 24b 24a 12b 6a 12a 8b  6c  6b 8a  6g  6f 4a 3c  6e  6d
	     7P 1a  3a  3b 2a 24c 24d 12a 6a 12b 8b  6b  6c 8a  6d  6e 4a 3c  6f  6g
	    11P 1a  3b  3a 2a 24d 24c 12b 6a 12a 8a  6c  6b 8b  6g  6f 4a 3c  6e  6d
	    13P 1a  3a  3b 2a 24c 24d 12a 6a 12b 8b  6b  6c 8a  6d  6e 4a 3c  6f  6g
	    17P 1a  3b  3a 2a 24d 24c 12b 6a 12a 8a  6c  6b 8b  6g  6f 4a 3c  6e  6d
	    19P 1a  3a  3b 2a 24a 24b 12a 6a 12b 8a  6b  6c 8b  6d  6e 4a 3c  6f  6g
	    23P 1a  3b  3a 2a 24b 24a 12b 6a 12a 8b  6c  6b 8a  6g  6f 4a 3c  6e  6d
	
	X.1      1   1   1  1   1   1   1  1   1  1   1   1  1   1   1  1  1   1   1
	X.2      1   1   1 -1  -1  -1   1  1   1 -1  -1  -1 -1   1   1  1  1   1   1
	X.3      1   A  /A  1   A  /A  /A  1   A  1   A  /A  1   A  /A  1  1   A  /A
	X.4      1   A  /A -1  -A -/A  /A  1   A -1  -A -/A -1   A  /A  1  1   A  /A
	X.5      1  /A   A  1  /A   A   A  1  /A  1  /A   A  1  /A   A  1  1  /A   A
	X.6      1  /A   A -1 -/A  -A   A  1  /A -1 -/A  -A -1  /A   A  1  1  /A   A
	X.7      2  -1  -1  .   .   .   2 -1   2  .   .   .  .   2  -1  2 -1  -1   2
	X.8      2 -/A  -A  .   B  /B   .  1   .  C   .   . -C  -D   A  . -1  /A -/D
	X.9      2 -/A  -A  .  -B -/B   .  1   . -C   .   .  C  -D   A  . -1  /A -/D
	X.10     2  -1  -1  .   C  -C   .  1   .  C   .   . -C  -2   1  . -1   1  -2
	X.11     2  -1  -1  .  -C   C   .  1   . -C   .   .  C  -2   1  . -1   1  -2
	X.12     2  -A -/A  . -/B  -B   .  1   .  C   .   . -C -/D  /A  . -1   A  -D
	X.13     2  -A -/A  .  /B   B   .  1   . -C   .   .  C -/D  /A  . -1   A  -D
	X.14     2  -A -/A  .   .   .   D -1  /D  .   .   .  .  /D -/A  2 -1  -A   D
	X.15     2 -/A  -A  .   .   .  /D -1   D  .   .   .  .   D  -A  2 -1 -/A  /D
	X.16     3   .   .  1  -1  -1  -1  .  -1 -1   1   1 -1   3   . -1  .   .   3
	X.17     3   .   . -1   1   1  -1  .  -1  1  -1  -1  1   3   . -1  .   .   3
	X.18     3   .   .  1 -/A  -A  -A  . -/A -1  /A   A -1   E   . -1  .   .  /E
	X.19     3   .   . -1  /A   A  -A  . -/A  1 -/A  -A  1   E   . -1  .   .  /E
	X.20     3   .   .  1  -A -/A -/A  .  -A -1   A  /A -1  /E   . -1  .   .   E
	X.21     3   .   . -1   A  /A -/A  .  -A  1  -A -/A  1  /E   . -1  .   .   E
	X.22     4   1   1  .   .   .   . -1   .  .   .   .  .  -4  -1  .  1  -1  -4
	X.23     4   A  /A  .   .   .   . -1   .  .   .   .  .   F -/A  .  1  -A  /F
	X.24     4  /A   A  .   .   .   . -1   .  .   .   .  .  /F  -A  .  1 -/A   F
	
	      2   3   3   4  4   4
	      3   1   1   2  2   2
	
	        24c 24d  3d 2b  3e
	     2P 12a 	12b  3e 1a  3d
	     3P  8b  8a  1a 2b  1a
	     5P 24d 24c  3e 2b  3d
	     7P 24a 24b  3d 2b  3e
	    11P 24b 24a  3e 2b  3d
	    13P 24a 24b  3d 2b  3e
	    17P 24b 24a  3e 2b  3d
	    19P 24c 24d  3d 2b  3e
	    23P 24d 24c  3e 2b  3d
	
	X.1       1   1   1  1   1
	X.2      -1  -1   1  1   1
	X.3       A  /A  /A  1   A
	X.4      -A -/A  /A  1   A
	X.5      /A   A   A  1  /A
	X.6     -/A  -A   A  1  /A
	X.7       .   .   2  2   2
	X.8      -B -/B  /D -2   D
	X.9       B  /B  /D -2   D
	X.10     -C   C   2 -2   2
	X.11      C  -C   2 -2   2
	X.12     /B   B   D -2  /D
	X.13    -/B  -B   D -2  /D
	X.14      .   .   D  2  /D
	X.15      .   .  /D  2   D
	X.16     -1  -1   3  3   3
	X.17      1   1   3  3   3
	X.18    -/A  -A  /E  3   E
	X.19     /A   A  /E  3   E
	X.20     -A -/A   E  3  /E
	X.21      A  /A   E  3  /E
	X.22      .   .   4 -4   4
	X.23      .   . -/F -4  -F
	X.24      .   .  -F -4 -/F
	
	A = E(3)
	  = (-1+ER(-3))/2 = b3
	B = -E(24)-E(24)^19
	C = -E(8)-E(8)^3
	  = -ER(-2) = -i2
	D = 2*E(3)^2
	  = -1-ER(-3) = -1-i3
	E = 3*E(3)^2
	  = (-3-3*ER(-3))/2 = -3-3b3
	F = -4*E(3)
	  = 2-2*ER(-3) = -4b3
	
	gap> quit;