Lineare Algebra und Analytische Geometrie I

Aufgabe 1 (mündlich) - Aufbaukurs Sei K ein Körper.

- a) Zeigen Sie: $\mathrm{SL}(n,K):=\{A\in\mathrm{GL}(n,K); \det A=1\}$ ist ein Normalteiler von $\mathrm{GL}(n,K).$
- b) Wenn K ein endlicher Körper mit q Elementen ist, wie viele Elemente besitzt dann $\mathrm{SL}(n,K)$?
- c) Sei $Z = \{A \in \operatorname{GL}(n,K); A \cdot X = X \cdot A \text{ für alle } X \in \operatorname{GL}(n,K)\}.$ Zeigen Sie $Z \cap \operatorname{SL}(n,K) \vartriangleleft \operatorname{GL}(n,K)$ und berechnen Sie die Ordnung dieses Normalteilers, wenn K endlich ist mit q Elementen.

Aufgabe 2 (mündlich) Sei V ein K - Vektorraum, $\alpha: V^n \longrightarrow K$ eine Volumenform und φ ein Automorphismus von V. Zeigen Sie, dass

$$\beta: V^n \longrightarrow K$$
 definiert durch $(w_1, \ldots, w_n) \mapsto \alpha(\varphi(w_1), \ldots, \varphi(w_n))$

eine Volumenform ist.

Aufgabe 3 (mündlich) Zeigen Sie: $A \in \mathbb{Z}^{n \times n}$ ist in $\mathbb{Z}^{n \times n}$ genau dann invertierbar, wenn $\det(A) = \pm 1$.

Aufgabe 4 (mündlich) Lösen Sie in Mathematik Online die interaktiven Aufgaben mit Nr 4, 5, 33 und 306.

Hinweise: Die Spur Sp(A) einer Matrix $A = (a_{ij})$ ist die Summe der Hauptdiagonalelemente, also $Sp(A) = \sum_{i=1}^{n} a_{ii}$.

Aufgabe 5 (mündlich) Bestimmen Sie die Determinanten der Matrizen

$$\begin{pmatrix} 2 & 0 & 3 & -1 \\ 1 & -1 & 2 & 1 \\ 1 & 1 & 2 & 1 \\ 0 & -1 & 1 & 0 \end{pmatrix} \text{ und } \begin{pmatrix} 2 & -3 & -5 & 3 \\ 1 & 2 & 13 & 99 \\ 0 & 0 & 4 & -3 \\ 0 & 0 & -2 & 1 \end{pmatrix}.$$

jeweils mit Hilfe des Entwicklungssatzes.

Aufgabe 6 (mündlich) Sei $A \in K^{n \times n}$. Wo tauchen Sp(A) und det(A) im charakteristischen Polynom $\chi_A(\lambda)$ auf?