Lineare Algebra und Analytische Geometrie II

Aufgabe 1 (mündlich) Welche der folgenden Behauptungen sind richtig? Geben Sie entweder ein Gegenbeispiel oder einen Beweis an. Seien $A \in \mathbb{R}^{n \times n}$ und $B \in \mathbb{C}^{n \times n}$.

- a) Ist A normal, dann ist A symmetrisch.
- b) Ist A diagonalisierbar, dann ist A auch orthogonal diagonalisierbar.
- c) Ist B symmetrisch, dann ist B diagonalisierbar.
- d) Ist B hermitesch, dann ist det B reell.
- e) Adjungierte Abbildungen sind linear.

Aufgabe 2 (mündlich) Sei $A \in \mathbb{R}^{n \times n}$. Welche der folgenden Größen/ Eigenschaften sind invariant unter den gegebenen Transformationen?

	T^tAT ,	$T^{-1}AT$,	T^tAT ,
	T regulär	T regulär	T orthogonal
Determinante			
Eigenwerte			
Rang			
Anzahl der pos. Eigenwerte			
Symmetrie			

Aufgabe 3 (schriftlich) (entspricht Teilen von Satz 8.14 der Vorlesung) Sei V ein unitärer Vektorraum. Zeigen Sie:

- a) Ist $V = U_1 \perp U_2$ für Untervektorräume U_1, U_2 von V. Dann ist $V = U_1 \oplus U_2$.
- b) Ist U ein Untervektorraum von V und V endlichdimensional, dann gilt $V=U\oplus U^{\perp}.$

Aufgabe 4 (schriftlich) Seien V, W euklidische bzw. unitäre Vektorräume und $\alpha: V \to W$ linear.

Zeigen Sie: Sind $\beta:W\to V$ und $\gamma:W\to V$ adjungiert zu α , dann folgt $\beta=\gamma$.

Aufgabe 5 (schriftlich) Gegeben sei die symmetrische Bilinearform $b : \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}$, $(\mathbf{x}, \mathbf{y}) \mapsto \mathbf{x}^t A \mathbf{y}$ mit

$$A = \begin{pmatrix} 3 & 0 & -2 \\ 0 & 1 & 2 \\ -2 & 2 & 2 \end{pmatrix}.$$

a) Bestimmen Sie eine Basis des \mathbb{R}^3 , bezüglich der b durch die Matrix

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

dargestellt wird.

b) Bestimmen Sie eine Koordinatentransformation $\mathbf{x} = S\mathbf{x}'$ des \mathbb{R}^3 mit einer orthogonalen Matrix S, so dass $D = S^t A S$ diagonal ist. Kann D das Aussehen der Matrix aus Teil a) annehmen?