Lineare Algebra und Analytische Geometrie I

Aufgabe 1 (mündlich) Seien M und N Teilmengen der Menge X. Zeigen Sie:

- a) $(M \subset N) \Leftrightarrow \overline{N} \subset \overline{M}$ b) $M \setminus N = \overline{\overline{M} \cup N}$ c) $M \setminus (M \cap N) = M \setminus N$ d) $\overline{M \cup N} = \overline{M} \cap \overline{N}$

Aufgabe 2 (mündlich) Sei \mathcal{P} die Menge aller Primzahlen. Welche der folgenden Aussagen sind wahr?

- a) $\forall \exists_{n \in \mathbb{N}, n \geq 2} \exists_{p \in \mathcal{P}} p \text{ teilt } n.$
- b) $\exists_{p \in \mathcal{P}} \forall_{n \in \mathbb{N}, n \geq 2} p \text{ teilt } n.$
- c) b) \Rightarrow a).

Verneinen Sie die Aussage b).

Aufgabe 3 (mündlich) Sei $f: A \to B$ eine Abbildung. Seien $X, Y \subset B$ und $W \subset A$. Sei $f^{-1}(X) = \{a \in A \mid f(a) \in X\}$ das Urbild der Menge X. Zeigen oder widerlegen Sie:

- a) $f^{-1}(X) \cap f^{-1}(Y) = f^{-1}(X \cap Y)$ b) $f(f^{-1}(X)) = X$ c) $W \subset f^{-1}(f(W))$ d) $f^{-1}(X \setminus Y) = f^{-1}(X) \setminus f^{-1}(Y)$

Aufgabe 4 (schriftlich) Zeigen Sie: Eine Abbildung $f: A \to B$ ist genau dann injektiv, wenn für alle $X, Y \subset A$ gilt: $f(X \cap Y) = f(X) \cap f(Y)$.

Seien A, B und C Mengen und $f: A \rightarrow B$ und Aufgabe 5 (schriftlich) $g: B \to C$ Abbildungen. Zeigen Sie:

- a) Ist $g \circ f$ surjektiv, dann ist auch g surjektiv.
- b) Ist $g \circ f$ injektiv, dann ist auch f injektiv.

Geben Sie ein Beispiel an, in dem $q \circ f$ bijektiv ist, aber f nicht surjektiv und qnicht injektiv.

Abgabe der schriftlichen und Besprechung der mündlichen Aufgaben am 31. Oktober in den Übungen.