Lineare Algebra und Analytische Geometrie I

Aufgabe 1 (mündlich) Gegeben sei ein gleichseitiges Dreieck. Mit D_g sei die Drehung des Dreiecks um g Grad mit dem Mittelpunkt als Zentrum bezeichnet und mit S_1 , S_2 und S_3 die Spiegelungen an den drei verschiedenen Seitenhalbierenden. Zeigen Sie, dass $\{id, D_{120}, D_{240}, S_1, S_2, S_3\}$ mit der Komposition eine Gruppe bildet und dass diese Gruppe nicht abelsch ist. Gibt es weitere Abbildungen, die die Eckpunkte des Dreiecks auf sich abbilden?

Aufgabe 2 (mündlich) Welche der folgenden Mengen bilden mit den angegebenen Verknüpfungen eine Gruppe?

- a) $\{$ wahr, falsch $\}$ mit der Konjunktion \land .
- b) $\mathbb{R} \setminus \{0\}$ mit der Division.
- c) Für $n \in \mathbb{N}$: $\{z \in \mathbb{C} \mid z^n = 1\}$ mit der komplexen Multiplikation.
- d) $\{f: \mathbb{N} \to \mathbb{N} \mid f \text{ bijektiv}, f(1) = 1\}$ mit der Hintereinanderausführung \circ .
- e) $\{f: \mathbb{N} \to \mathbb{N} \mid f \text{ bijektiv}, f(1) = 2\}$ mit der Hintereinanderausführung \circ .

Aufgabe 3 (mündlich) - **Aufbaukurs** Sei (H, *) eine kommutative Halbgruppe mit Kürzungsregel. Zeigen Sie: Gibt es in H Elemente a und b mit b * a = a, dann ist (H, *) ein Monoid mit Einselement b.

Aufgabe 4 (schriftlich) Sei X eine Menge. Die *symmetrische Differenz* zweier Teilmengen $A, B \subset X$ ist definiert als

$$A \triangle B := (A \setminus B) \cup (B \setminus A).$$

Zeigen Sie, dass die Potenzmenge $\mathcal{P}(X)$ mit der Verknüpfung \triangle eine Gruppe bildet.

Aufgabe 5 (schriftlich)

- a) Sei (G, \cdot) eine Gruppe mit neutralem Element e. Für alle $g \in G$ gelte $g \cdot g = e$. Zeigen Sie, dass G abelsch ist.
- b) Sei M eine endliche Menge und * eine assoziative Verknüpfung auf M mit neutralem Element e, d.h., für alle $m \in M$ gilt m * e = e * m = m. Außerdem gelte für alle $x, y, m \in M$:

$$x * m = y * m \implies x = y.$$

Zeigen Sie, dass jedes $m \in M$ ein Linksinverses besitzt, dass also ein \overline{m} existiert mit $\overline{m}m = e$. (D.h., (M, *) ist eine Gruppe.)

Abgabe der schriftlichen und Besprechung der mündlichen Aufgaben am 28. November in den Übungen.