Mo Logo [Home] [Lexikon] [Aufgaben] [Tests] [Kurse] [Begleitmaterial] [Hinweise] [Mitwirkende] [Publikationen]

Mathematik-Online-Test:

Prof. Stroppel, Übungsklausur 5


Dieser Test enthält Aufgaben (A) mit Varianten (V).

Angezeigt:  A1 V3   A2 V6 
Variantenauswahl:

Test mit ausgewählten Varianten .


Aufgabe 1:
a)
Gegeben sind die komplexen Zahlen $ z_1=4-3\, \mathrm{i}$ und $ z_2=1-2\, \mathrm{i}$. Berechnen Sie:

$\displaystyle a = z_1z_2\,,\quad b = z_1/z_2\,. $

b)
Gegeben ist $ z=\sqrt{3}+\, \mathrm{i}$.Geben Sie die Polarkoordinatendarstellung $ r(\, \mathrm{cos}(\varphi)+\,
\mathrm{i}\, \mathrm{sin}(\varphi))$ mit $ 0 \leq r$ und $ 0 \leq
\varphi < 2\pi$ für

$\displaystyle c= z\,,\quad d = z^{19}$

an.

Antwort:

a)

$ a=$ + $ \, \mathrm{i}$

$ b=$ + $ \, \mathrm{i}$

b)
$ c=$ $ (\, \mathrm{cos}($ $ /$$ \, \pi)$ $ +\, \mathrm{i}\, \mathrm{sin}($ $ /$$ \, \pi))$

$ d=$ $ (\, \mathrm{cos}($ $ /$$ \, \pi)$ $ +\, \mathrm{i}\, \mathrm{sin}($ $ /$$ \, \pi))$

(Brüche ganzzahlig gekürzt mit positivem Nenner.)


Aufgabe 2:
a)
Berechnen Sie den Konvergenzradius der folgenden Potenzreihe:
$ \sum \limits_{n=0}^{\infty} 2^{(n^2)}x^n$
b)
Berechnen Sie den folgenden Grenzwert
$ \lim \limits_{x \rightarrow 0} \dfrac{\cos(x)-\cos(3x)}{x^2} = a$

Antwort:

a)
$ r=$
b)
$ a = $ /
(Brüche gekürzt mit positivem Nenner.)


   

  automatisch erstellt am 11.8.2017