Mo Logo [Home] [Lexikon] [Aufgaben] [Tests] [Kurse] [Begleitmaterial] [Hinweise] [Mitwirkende] [Publikationen]

Mathematik-Online-Test:

Prof. Stroppel, Übungsklausur 6


Dieser Test enthält Aufgaben (A) mit Varianten (V).

Angezeigt:  A1 V9   A2 V20 
Variantenauswahl:

Test mit ausgewählten Varianten .


Aufgabe 1:

Gegeben sind die Matrizen:

$\displaystyle A=\left( \begin{array}{rr} 7&2\\ -4&-5 \end{array} \right)\,,\qua...
...) \,,\quad
C(t)=\left( \begin{array}{rr} 7&2 \\ -4&t-2 \end{array} \right) \,.
$

a)
Berechnen Sie $ \mathrm{det}A=a$ und $ \mathrm{det}B=b$
b)
Berechnen Sie alle $ t\in \mathbb{R}$ so, dass $ \mathrm{det}C(t)=t^3$

Antwort:

a)
$ a= $         $ b=$
b)
$ t\in \Big\{$ , , $ \Big\}$ (aufsteigend sortiert)

Aufgabe 2:

Gegeben ist die Funktion

$\displaystyle f: D \longrightarrow \mathbb{R}: x \mapsto \frac{x^2+2x-1}{x^3+x} $

Bestimmen Sie den maximalen Definitionsbereich $ D \subseteq
\mathbb{R}$ von $ f$.

$ D = \mathbb{R} \backslash \Big\{$ $ \Big\}$

Kreuzen Sie den richtigen Ansatz zur Bestimmung der Partialbruchzerlegung von f an.

keine Angabe
$ f(x)= \frac {A}{x} + \frac {B}{x-1} + \frac {C}{x+1}$
$ f(x)= \frac {A+xB}{x} + \frac {C}{x^2+1} $
$ f(x)= \frac {A}{x} + \frac {B+xC}{x^2+1}$

Daraus ergibt sich für die verwendeten Konstanten:

Somit lautet eine Stammfunktion $ F$ von $ f$:

$ F(x) = $ keine Angabe

$ [\ln(\frac{x^2+1}{\vert x\vert})+\arctan(x)]$

$ [\ln(\frac{x^2}{\sqrt{x^2+1}})-\arctan(x)]$

$ [\ln(\frac{x^2+1}{\vert x\vert})+2\arctan(x)]$

$ [\ln(\frac{x^2}{\sqrt{x^2+1}})+\arctan(x)]$


   

  automatisch erstellt am 11.8.2017