Mo Logo [Home] [Lexikon] [Aufgaben] [Tests] [Kurse] [Begleitmaterial] [Hinweise] [Mitwirkende] [Publikationen]

Mathematik-Online-Test:

Prof. Stroppel, Übungsklausur 6


Dieser Test enthält Aufgaben (A) mit Varianten (V).

Angezeigt:  A1 V25   A2 V12 
Variantenauswahl:

Test mit ausgewählten Varianten .


Aufgabe 1:
Geben Sie - falls er existiert - den Grenzwert der nachfolgenden Folgen bzw. Reihen an.

a) $ \left( \dfrac{3k^4+2k^2+1}{2k^3-7k^4+2k} \right)_{k \in \mathbb{N}}$  
b) $ \sum \limits_{k=1}^{\infty}\dfrac{1}{12k^2-3}$  
c) $ \sum \limits_{k=1}^{\infty}\dfrac{1}{3^k}$  
d) $ \sum \limits_{k=0}^{\infty}\dfrac{(-1)^k2^{2k+1}}{(2k+1)!}$

 

Antwort:

a)
divergent      konvergent mit Grenzwert /
b)
divergent      konvergent mit Grenzwert /
c)
divergent      konvergent mit Grenzwert /
d)
divergent      konvergent mit Grenzwert $ \sin($ $ )$


(Brüche gekürzt mit positivem Nenner.)
Aufgabe 2:
Führen Sie eine Kurvendiskussion der Funktion

$\displaystyle f: \mathbb{R} \rightarrow \mathbb{R}: x \mapsto \frac14 \frac{x^3-x^2-2x}{x^2+3x+2}
$

durch.

Antwort:

Geben Sie die Werte stets in aufsteigender Reihenfolge an und lassen Sie nicht benötigte Felder leer.

Definitionsbereich:

$ D= \mathbb{R} \setminus \big \{$ , , $ \big\}$ .

Nullstellen:

$ x \in \big \{$ , , $ \big\}$ .

Erste Ableitung:

$ f'(x)=$
$ x^2$ + $ x$ +

$ \cdot \big( x +$ $ \big) \ \hat{} \, $

Zweite Ableitung:

$ f''(x)=$
$ x^2$ + $ x$ +

$ \big( x +$ $ \big) \ \hat{} \, $
.

Tiefpunkt:

$ \big($ $ \sqrt{2}$ + , $ \sqrt{2}$ + / $ 2 \big)$

Hochpunkt:

$ \big($ $ \sqrt{2}$ + , $ \sqrt{2}$ + / $ 2 \big)$ .

senkrechte Asymptoten in:

$ x \in \big \{$ , , $ \big\}$

Stetig ergänzbar in:

$ x \in \big \{$ , , $ \big\}$

Skizze:

\includegraphics[width=8cm]{koordinatengitter-l-3}   \includegraphics[width=8cm]{koordinatengitter-l-4}
 
\includegraphics[width=8cm]{koordinatengitter-l-1}   \includegraphics[width=8cm]{koordinatengitter-l-2}
 

   

  automatisch erstellt am 11.8.2017