Mo Logo [Home] [Lexikon] [Aufgaben] [Tests] [Kurse] [Begleitmaterial] [Hinweise] [Mitwirkende] [Publikationen]

Mathematik-Online-Test:

Prof. Stroppel, Übungsklausur 6


Dieser Test enthält Aufgaben (A) mit Varianten (V).

Angezeigt:  A1 V21   A2 V26 
Variantenauswahl:

Test mit ausgewählten Varianten .


Aufgabe 1:

Gegeben ist die Matrix $ A$ und der Vektor $ v_1$ mit

\begin{displaymath}
A=
\left(
\begin{array}{rrr}
11&0&2\\
0&25&0\\
2&0&14
\end{array}\right)
\end{displaymath}         

\begin{displaymath}
v_1=
\left(
\begin{array}{r}
1\\ 0\\ 2
\end{array}\right)
\end{displaymath}

$ A$ besitzt drei verschiedene Eigenwerte, wobei zu einem der Eigenvektor $ v_1$ gehört. Berechnen Sie je einen normierten Eigenvektor zu den beiden anderen Eigenwerten und geben Sie das in Linearfaktoren zerlegte charakteristische Polynom $ \chi_A$ der Matrix $ A$ an.

Antwort:

$ v_2=$ $ \left( \rule{0pt}{6ex}\right.$
$ \left. \rule{0pt}{6ex}\right)$

$ v_3= \frac{1}{\sqrt{5}}$ $ \left( \rule{0pt}{6ex}\right.$
$ \left. \rule{0pt}{6ex}\right)$

(ganzahlige Einträge, erster von Null verschiedener Eintrag positiv)

$ \chi_A(\lambda)=($ $ -\lambda) ($ $ -\lambda) ($$ -\lambda)$

(Eigenwerte aufsteigend geordnet)


Aufgabe 2:

a)
Bestimmen Sie den Konvergenzradius $ \rho$ der reellen Potenzreihe $ \sum\limits_{k=0}^{\infty} (-4)^k x^k$

b)
Bestimmen Sie eine Stammfunktion $ F$ von

$\displaystyle f: (-\rho,\rho) \rightarrow \mathbb{R}: x \mapsto \sum_{k=0}^{\infty} (-4)^k x^k $

durch gliedweise Integration.

c)
Geben Sie $ f$ in geschlossener Form an.

d)
Berechnen Sie daraus erneut eine Stammfunktion $ \tilde{F}$ von $ f$.

Antwort:

a)
$ \rho = $

b)
$ F(x) = \sum\limits_{k=1}^{\infty} \frac{(a)^{k-1}}{k} x^k + c $ mit $ a=$

c)
$ f = \frac{1}{1+bx}$ mit $ b= $

d)
$ \tilde{F} = \frac 1 4 \ln{(1+dx)}+c$ mit $ d = $


   

  automatisch erstellt am 11.8.2017