Mo Logo [Home] [Lexikon] [Aufgaben] [Tests] [Kurse] [Begleitmaterial] [Hinweise] [Mitwirkende] [Publikationen]

Mathematik-Online-Test:

MINT HM 1 Online Übungen, Test 11


Dieser Test enthält Aufgaben (A) mit Varianten (V).

Angezeigt:  A1 V45 
Variantenauswahl:

Test mit ausgewählten Varianten .


Aufgabe 1:
(a)
Untersuchen Sie auf Konvergenz. Falls ein Grenzwert existiert, tragen Sie diesen ein. Ansonsten lassen Sie den Kasten frei.

(1) $ \displaystyle\lim\limits_{N\to +\infty} 4\sum\limits_{k=1}^{N} \left(\frac{7}{11}\right)^{k}$ ist nicht konvergent, konvergent mit dem Grenzwert .
(2) $ \displaystyle\lim\limits_{N\to +\infty} \sum\limits_{k=68}^{N} \frac{10}{-2k+9}$ ist nicht konvergent, konvergent mit dem Grenzwert .
(3) $ \displaystyle\lim\limits_{n\in\mathbb{N}} \frac{-11n^2-25n-28}{16n^{-2}-11n+1}$ ist nicht konvergent, konvergent mit dem Grenzwert .

(b)
Bestimmen Sie den Grenzwert der rekursiv definierten Folge $ (a_n)_{n\in\mathbb{N}}$ mit

$\displaystyle a_1 = 0, \quad a_{n+1} = \sqrt{7+6a_n}, \quad n\in\mathbb{N}.
$

$ \lim\limits_{n\in\mathbb{N}} a_n = $ .

   

  automatisch erstellt am 11.8.2017