Mo Logo [Home] [Lexikon] [Aufgaben] [Tests] [Kurse] [Begleitmaterial] [Hinweise] [Mitwirkende] [Publikationen] Englische Flagge

Mathematik-Online-Aufgabensammlung:

Aufgabe 532: Matrixdarstellung einer gebrochen rationalen Funktion


A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Setzt man $ z=x/y $ und $ w=u/v $, so läßt sich die Abbildung

$\displaystyle w=r(z)= \frac{az+b}{cz+d} \ \ \ \ \ ( ad-bc \neq 0)
$

als Matrixmultiplikation

$\displaystyle \begin{pmatrix}u \\ v\end{pmatrix} = A \begin{pmatrix}x \\ y \end{pmatrix}$

schreiben.

a)
Bestimmen Sie die bis auf ein Vielfaches eindeutig bestimmte Matrix A.

b)
Geben Sie die Umkehrabbildung $ z= r^{-1}(w) $ an sowie die dazugehörige Matrix.

c)
Welche speziellen Matrizen ergeben sich bei den Abbildungen $ 3z $, $ z+7 $ und $ 1/z$?
(Autor: Klaus Höllig)

siehe auch:



  automatisch erstellt am 12.  3. 2018