pgr22:=function() local d,g,sg,p; d:=FreeGroup("a","b","c"); g:=d/[d.1^2,d.2^2,d.3^2,d.1*d.2*d.3*d.1*d.2*d.3*d.2*d.1*d.3*d.2,d.1*d.2*d.3*d.1*d.2*d.1*d.3*d.2*d.1*d.3]; sg:=Subgroup(g,[g.1]); p:=Image(ActionHomomorphism(g,RightTransversal(g,sg),OnRight)); return p; end;
G22:=pgr22(); gap> Size(G22); 240 gap> N22:=NormalSubgroups(G22);; gap> NTSize(N22); Groesse des 1. Normalteilers: 1 Groesse des 2. Normalteilers: 2 Groesse des 3. Normalteilers: 4 Groesse des 4. Normalteilers: 120 Groesse des 5. Normalteilers: 240 gap> Centre(G22); <permutation group of size 4 with 1 generators> gap> Size(Centre(G22)); 4 gap> IsSolvable(G22); false gap> CompositionSeries(G22); [ <permutation group of size 240 with 6 generators>, <permutation group of size 4 with 2 generators>, <permutation group of size 2 with 1 generators>, Group(()) ]
gap> ct22:=CharacterTable(G22); CharacterTable( <permutation group of size 240 with 3 generators> ) gap> Display(ct22); CT1 2 4 3 2 2 2 2 2 2 2 2 3 2 2 2 2 4 4 4 3 1 . . . . . 1 1 1 . . . . . 1 1 1 1 5 1 . 1 1 1 1 . . . 1 . 1 1 1 . 1 1 1 1a 2a 10a 20a 20b 5a 6a 12a 12b 10b 4a 20c 20d 5b 3a 4b 4c 2b 2P 1a 1a 5a 10a 10a 5b 3a 6a 6a 5b 2b 10b 10b 5a 3a 2b 2b 1a 3P 1a 2a 10b 20c 20d 5b 2b 4b 4c 10a 4a 20a 20b 5a 1a 4c 4b 2b 5P 1a 2a 2b 4b 4c 1a 6a 12a 12b 2b 4a 4c 4b 1a 3a 4b 4c 2b 7P 1a 2a 10b 20c 20d 5b 6a 12b 12a 10a 4a 20a 20b 5a 3a 4c 4b 2b 11P 1a 2a 10a 20b 20a 5a 6a 12b 12a 10b 4a 20d 20c 5b 3a 4c 4b 2b 13P 1a 2a 10b 20d 20c 5b 6a 12a 12b 10a 4a 20b 20a 5a 3a 4b 4c 2b 17P 1a 2a 10b 20d 20c 5b 6a 12a 12b 10a 4a 20b 20a 5a 3a 4b 4c 2b 19P 1a 2a 10a 20b 20a 5a 6a 12b 12a 10b 4a 20d 20c 5b 3a 4c 4b 2b X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 X.2 1 -1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 X.3 2 . A B -B -*A 1 -D D *A . -C C -A -1 E -E -2 X.4 2 . A -B B -*A 1 D -D *A . C -C -A -1 -E E -2 X.5 2 . *A C -C -A 1 -D D A . -B B -*A -1 E -E -2 X.6 2 . *A -C C -A 1 D -D A . B -B -*A -1 -E E -2 X.7 3 -1 A *A *A *A . . . *A -1 A A A . 3 3 3 X.8 3 1 A -*A -*A *A . . . *A -1 -A -A A . -3 -3 3 X.9 3 -1 *A A A A . . . A -1 *A *A *A . 3 3 3 X.10 3 1 *A -A -A A . . . A -1 -*A -*A *A . -3 -3 3 X.11 4 . -1 -1 -1 -1 1 1 1 -1 . -1 -1 -1 1 4 4 4 X.12 4 . -1 1 1 -1 1 -1 -1 -1 . 1 1 -1 1 -4 -4 4 X.13 4 . 1 D -D -1 -1 D -D 1 . -D D -1 1 F -F -4 X.14 4 . 1 -D D -1 -1 -D D 1 . D -D -1 1 -F F -4 X.15 5 1 . . . . -1 -1 -1 . 1 . . . -1 5 5 5 X.16 5 -1 . . . . -1 1 1 . 1 . . . -1 -5 -5 5 X.17 6 . -1 -D D 1 . . . -1 . D -D 1 . G -G -6 X.18 6 . -1 D -D 1 . . . -1 . -D D 1 . -G G -6 A = -E(5)-E(5)^4 = (1-ER(5))/2 = -b5 B = -E(20)^13-E(20)^17 C = -E(20)-E(20)^9 D = E(4) = ER(-1) = i E = -2*E(4) = -2*ER(-1) = -2i F = -4*E(4) = -4*ER(-1) = -4i G = -6*E(4) = -6*ER(-1) = -6i gap> quit;