pgr23:=function() local d,g,sg,p; d:=FreeGroup("a","b","c"); g:=d/[d.1^2,d.2^2,d.3^2,d.1*d.2*d.1*d.2*d.1*d.2*d.1*d.2*d.1*d.2,d.2*d.3*d.2*d.3*d.2*d.3,d.1*d.3*d.1*d.3]; sg:=Subgroup(g,[g.1,g.2]); p:=Image(ActionHomomorphism(g,RightTransversal(g,sg),OnRight)); return p; end;
G23:=pgr23(); gap> Size(G23); 120 gap> N23:=NormalSubgroups(G23);; gap> NTSize(N23); Groesse des 1. Normalteilers: 1 Groesse des 2. Normalteilers: 2 Groesse des 3. Normalteilers: 60 Groesse des 4. Normalteilers: 120 gap> Centre(G23); Group([ ( 1,12)( 2,11)( 3,10)( 4, 9)( 5, 8)( 6, 7) ]) gap> Size(Centre(G23)); 2 gap> IsSolvable(G23); false gap> CompositionSeries(G23); [ Group([ ( 3, 4)( 5, 6)( 7, 8)( 9,10), ( 2, 3)( 4, 5)( 8, 9)(10,11), ( 1, 2)( 5, 7)( 6, 8)(11,12), ( 1,12)( 2,11)( 3,10)( 4, 9)( 5, 8) ( 6, 7) ]), Group([ ( 1,12)( 2,11)( 3,10)( 4, 9)( 5, 8)( 6, 7) ]), Group(()) ]
gap> ct23:=CharacterTable(G23); CharacterTable( Group([ ( 3, 4)( 5, 6)( 7, 8)( 9,10), ( 2, 3)( 4, 5)( 8, 9)(10,11), ( 1, 2)( 5, 7)( 6, 8)(11,12) ]) ) gap> Display(ct23); CT1 2 3 3 1 1 3 1 1 1 1 3 3 1 . . . . 1 . 1 . 1 5 1 . 1 1 . . 1 . 1 1 1a 2a 5a 5b 2b 3a 10a 6a 10b 2c 2P 1a 1a 5b 5a 1a 3a 5a 3a 5b 1a 3P 1a 2a 5b 5a 2b 1a 10b 2c 10a 2c 5P 1a 2a 1a 1a 2b 3a 2c 6a 2c 2c 7P 1a 2a 5b 5a 2b 3a 10b 6a 10a 2c X.1 1 1 1 1 1 1 1 1 1 1 X.2 1 -1 1 1 1 1 -1 -1 -1 -1 X.3 3 -1 A *A -1 . *A . A 3 X.4 3 1 A *A -1 . -*A . -A -3 X.5 3 -1 *A A -1 . A . *A 3 X.6 3 1 *A A -1 . -A . -*A -3 X.7 4 . -1 -1 . 1 -1 1 -1 4 X.8 4 . -1 -1 . 1 1 -1 1 -4 X.9 5 1 . . 1 -1 . -1 . 5 X.10 5 -1 . . 1 -1 . 1 . -5 A = -E(5)-E(5)^4 = (1-ER(5))/2 = -b5 gap> quit;