Eigenschaften der Gruppe G28 mit Hilfe von GAP



Permutationsdarstellung der G28

	pgr28:=function()
	local v,g,sg,p;
	v:=FreeGroup("a","b","c","d");
	g:=v/[v.1^2,v.2^2,v.3^2,v.4^2,v.1*v.2*v.1*v.2*v.1*v.2,v.2*v.3*v.2*v.3*v.2*v.3*v.2*v.3,v.3*v.4*v.3*v.4*v.3*v.4,v.1*v.3*v.1*v.3,v.1*v.4*v.1*v.4,v.2*v.4*v.2*v.4];
	sg:=Subgroup(g,[g.1,g.2,g.3]);
	p:=Image(ActionHomomorphism(g,RightTransversal(g,sg),OnRight));
	return p;
	end;
	

Ergebnisse

	G28:=pgr28();
	
	gap> Size(G28);
	1152
	
	gap> N28:=NormalSubgroups(G28);;
	
	gap> NTSize(N28);
	Groesse des 1. Normalteilers: 1
	Groesse des 2. Normalteilers: 2
	Groesse des 3. Normalteilers: 32
	Groesse des 4. Normalteilers: 96
	Groesse des 5. Normalteilers: 96
	Groesse des 6. Normalteilers: 192
	Groesse des 7. Normalteilers: 192
	Groesse des 8. Normalteilers: 288
	Groesse des 9. Normalteilers: 576
	Groesse des 10. Normalteilers: 576
	Groesse des 11. Normalteilers: 576
	Groesse des 12. Normalteilers: 1152
	
	gap> Centre(G28);
	Group([ ( 1,24)( 2,23)( 3,22)( 4,21)( 5,20)( 6,19)( 7,17)( 8,18)( 9,15)(10,16)
	    (11,13)(12,14) ])
	
	gap> Size(Centre(G28));
	2
	
	gap> IsSolvable(G28);
	true
	
	gap> CompositionSeries(G28);
	[ <permutation group of size 1152 with 9 generators>, 
	  <permutation group of size 576 with 8 generators>,
	  <permutation group of size 192 with 7 generators>, 
	  <permutation group of size 96 with 6 generators>, 
	  <permutation group of size 32 with 5 generators>, 
	  <permutation group of size 16 with 4 generators>, 
	  Group([ ( 2, 7)( 3, 5)( 4,11)( 6, 9)( 8,18)(12,14)(13,21)(15,19)(17,23)
	        (20,22), ( 2, 6)( 3, 4)( 5,11)( 7, 9)(10,16)(12,14)(13,20)(15,17)
	        (19,23)(21,22), ( 1,24)( 2,23)( 3,22)( 4,21)( 5,20)( 6,19)( 7,17)
	        ( 8,18)( 9,15)(10,16)(11,13)(12,14) ]), 
	  Group([ ( 2, 6)( 3, 4)( 5,11)( 7, 9)(10,16)(12,14)(13,20)(15,17)(19,23)
	        (21,22), ( 1,24)( 2,23)( 3,22)( 4,21)( 5,20)( 6,19)( 7,17)( 8,18)
	        ( 9,15)(10,16)(11,13)(12,14) ]), 
	  Group([ ( 1,24)( 2,23)( 3,22)( 4,21)( 5,20)( 6,19)( 7,17)( 8,18)( 9,15)
	        (10,16)(11,13)(12,14) ]), Group(()) ]
	

Charaktertafel

	gap> ct28:=CharacterTable(G28);
	CharacterTable( <permutation group of size 1152 with 4 generators> )
	
	gap> Display(ct28);
	CT1
	
	      2  7   7  6  5  2  2  5  5  4  2  2   2  3  3  2  2  5  5  4  2  2  4  5
	      3  2   2  .  1  2  2  1  1  .  2  2   1  2  2  1  1  1  1  .  1  1  .  .
	
	        1a  2a 2b 4a 3a 6a 2c 2d 4b 3b 6b 12a 6c 3c 6d 6e 2e 2f 4c 6f 6g 2g 4d
	     2P 1a  1a 1a 2a 3a 3a 1a 1a 2b 3b 3b  6c 3c 3c 3b 3b 1a 1a 2b 3a 3a 1a 2b
	     3P 1a  2a 2b 4a 1a 2a 2c 2d 4b 1a 2a  4a 2a 1a 2c 2d 2e 2f 4c 2f 2e 2g 4d
	     5P 1a  2a 2b 4a 3a 6a 2c 2d 4b 3b 6b 12a 6c 3c 6d 6e 2e 2f 4c 6f 6g 2g 4d
	     7P 1a  2a 2b 4a 3a 6a 2c 2d 4b 3b 6b 12a 6c 3c 6d 6e 2e 2f 4c 6f 6g 2g 4d
	    11P 1a  2a 2b 4a 3a 6a 2c 2d 4b 3b 6b 12a 6c 3c 6d 6e 2e 2f 4c 6f 6g 2g 4d
	
	X.1      1   1  1  1  1  1  1  1  1  1  1   1  1  1  1  1  1  1  1  1  1  1  1
	X.2      1   1  1  1  1  1 -1 -1 -1  1  1   1  1  1 -1 -1  1  1  1  1  1 -1 -1
	X.3      1   1  1  1  1  1  1  1  1  1  1   1  1  1  1  1 -1 -1 -1 -1 -1 -1 -1
	X.4      1   1  1  1  1  1 -1 -1 -1  1  1   1  1  1 -1 -1 -1 -1 -1 -1 -1  1  1
	X.5      2   2  2  2 -1 -1  .  .  .  2  2  -1 -1 -1  .  . -2 -2 -2  1  1  .  .
	X.6      2   2  2  2 -1 -1  .  .  .  2  2  -1 -1 -1  .  .  2  2  2 -1 -1  .  .
	X.7      2   2  2  2  2  2 -2 -2 -2 -1 -1  -1 -1 -1  1  1  .  .  .  .  .  .  .
	X.8      2   2  2  2  2  2  2  2  2 -1 -1  -1 -1 -1 -1 -1  .  .  .  .  .  .  .
	X.9      4  -4  .  .  1 -1 -2  2  .  1 -1   .  2 -2  1 -1 -2  2  . -1  1  .  2
	X.10     4  -4  .  .  1 -1 -2  2  .  1 -1   .  2 -2  1 -1  2 -2  .  1 -1  . -2
	X.11     4  -4  .  .  1 -1  2 -2  .  1 -1   .  2 -2 -1  1 -2  2  . -1  1  . -2
	X.12     4  -4  .  .  1 -1  2 -2  .  1 -1   .  2 -2 -1  1  2 -2  .  1 -1  .  2
	X.13     4   4  4  4 -2 -2  .  .  . -2 -2   1  1  1  .  .  .  .  .  .  .  .  .
	X.14     6   6 -2  2  .  .  .  .  .  .  .  -1  3  3  .  .  .  .  .  .  . -2  2
	X.15     6   6 -2  2  .  .  .  .  .  .  .  -1  3  3  .  .  .  .  .  .  .  2 -2
	X.16     8  -8  .  . -1  1  .  .  .  2 -2   . -2  2  .  . -4  4  .  1 -1  .  .
	X.17     8  -8  .  . -1  1  .  .  .  2 -2   . -2  2  .  .  4 -4  . -1  1  .  .
	X.18     8  -8  .  .  2 -2 -4  4  . -1  1   . -2  2 -1  1  .  .  .  .  .  .  .
	X.19     8  -8  .  .  2 -2  4 -4  . -1  1   . -2  2  1 -1  .  .  .  .  .  .  .
	X.20     9   9  1 -3  .  . -3 -3  1  .  .   .  .  .  .  . -3 -3  1  .  .  1  1
	X.21     9   9  1 -3  .  . -3 -3  1  .  .   .  .  .  .  .  3  3 -1  .  . -1 -1
	X.22     9   9  1 -3  .  .  3  3 -1  .  .   .  .  .  .  . -3 -3  1  .  . -1 -1
	X.23     9   9  1 -3  .  .  3  3 -1  .  .   .  .  .  .  .  3  3 -1  .  .  1  1
	X.24    12  12 -4  4  .  .  .  .  .  .  .   1 -3 -3  .  .  .  .  .  .  .  .  .
	X.25    16 -16  .  . -2  2  .  .  . -2  2   .  2 -2  .  .  .  .  .  .  .  .  .
	
	      2  5  3
	      3  .  .
	
	        4e 8a
	     2P 2b 4a
	     3P 4e 8a
	     5P 4e 8a
	     7P 4e 8a
	    11P 4e 8a
	
	X.1      1  1
	X.2     -1 -1
	X.3     -1 -1
	X.4      1  1
	X.5      .  .
	X.6      .  .
	X.7      .  .
	X.8      .  .
	X.9     -2  .
	X.10     2  .
	X.11     2  .
	X.12    -2  .
	X.13     .  .
	X.14     2  .
	X.15    -2  .
	X.16     .  .
	X.17     .  .
	X.18     .  .
	X.19     .  .
	X.20     1 -1
	X.21    -1  1
	X.22    -1  1
	X.23     1 -1
	X.24     .  .
	X.25     .  .
	
	gap> quit;