Eigenschaften der Gruppe G27 mit Hilfe von GAP



Permutationsdarstellung der G27

	pgr27:=function()
	local d,g,sg,p;
	d:=FreeGroup("a","b","c");
	g:=d/[d.1^2,d.2^2,d.3^2,d.1*d.2*d.1*d.2*d.1*d.2*d.1*d.2,d.2*d.3*d.2*d.3*d.2*d.3*d.2*d.3*d.2*d.3,d.1*d.3*d.1*d.3*d.1*d.3,d.3*d.2*d.3*d.1*d.3*d.2*d.3*d.1*d.3*d.2*d.3*d.1];
	sg:=Subgroup(g,[g.2,g.3]);
	p:=Image(ActionHomomorphism(g,RightTransversal(g,sg),OnRight));
	return p;
	end;
	

Ergebnisse

	G27:=pgr27();
	
	gap> Size(G27);
	2160
	
	gap> N27:=NormalSubgroups(G27);;
	
	gap> NTSize(N27);
	Groesse des 1. Normalteilers: 1
	Groesse des 2. Normalteilers: 2
	Groesse des 3. Normalteilers: 3
	Groesse des 4. Normalteilers: 6
	Groesse des 5. Normalteilers: 1080
	Groesse des 6. Normalteilers: 2160
	
	gap> Centre(G27);
	<permutation group of size 6 with 1 generators>
	
	gap> Size(Centre(G27));
	6
	
	gap> IsSolvable(G27);
	false
	
	gap> CompositionSeries(G27);
	[ <permutation group of size 2160 with 8 generators>, 
	  <permutation group of size 6 with 2 generators>, 
	  <permutation group of size 3 with 1 generators>, Group(()) ]
	

Charaktertafel

	gap> ct27:=CharacterTable(G27);
	CharacterTable( <permutation group of size 2160 with 3 generators> )
	
	gap> Display(ct27);
	CT1
	
	      2  4  4  4   4   4   4  1  1  4   4   4   4  4   4   1   1   1   1   1
	      3  3  3  3   3   3   3  2  2  1   1   1   1  1   1   1   1   1   1   1
	      5  1  1  1   1   1   1  .  .  .   .   .   .  .   .   1   1   1   1   1
	
	        1a 3a 3b  6a  2a  6b 3c 6c 2b  6d  6e  6f 2c  6g 30a 10a 30b 15a 15b
	     2P 1a 3b 3a  3a  1a  3b 3c 3c 1a  3b  3a  3a 1a  3b 15c  5b 15d 15d 15c
	     3P 1a 1a 1a  2a  2a  2a 1a 2a 2b  2b  2b  2c 2c  2c 10b 10b 10b  5b  5b
	     5P 1a 3b 3a  6b  2a  6a 3c 6c 2b  6e  6d  6g 2c  6f  6b  2a  6a  3b  3a
	     7P 1a 3a 3b  6a  2a  6b 3c 6c 2b  6d  6e  6f 2c  6g 30c 10b 30d 15c 15d
	    11P 1a 3b 3a  6b  2a  6a 3c 6c 2b  6e  6d  6g 2c  6f 30b 10a 30a 15b 15a
	    13P 1a 3a 3b  6a  2a  6b 3c 6c 2b  6d  6e  6f 2c  6g 30c 10b 30d 15c 15d
	    17P 1a 3b 3a  6b  2a  6a 3c 6c 2b  6e  6d  6g 2c  6f 30d 10b 30c 15d 15c
	    19P 1a 3a 3b  6a  2a  6b 3c 6c 2b  6d  6e  6f 2c  6g 30a 10a 30b 15a 15b
	    23P 1a 3b 3a  6b  2a  6a 3c 6c 2b  6e  6d  6g 2c  6f 30d 10b 30c 15d 15c
	    29P 1a 3b 3a  6b  2a  6a 3c 6c 2b  6e  6d  6g 2c  6f 30b 10a 30a 15b 15a
	
	X.1      1  1  1   1   1   1  1  1  1   1   1   1  1   1   1   1   1   1   1
	X.2      1  1  1  -1  -1  -1  1 -1 -1  -1  -1   1  1   1  -1  -1  -1   1   1
	X.3      3  A /A -/A  -3  -A  .  .  1   E  /E -/E -1  -E   G   I  /G -/G  -G
	X.4      3  A /A -/A  -3  -A  .  .  1   E  /E -/E -1  -E   H  *I  /H -/H  -H
	X.5      3  A /A  /A   3   A  .  . -1  -E -/E -/E -1  -E  -H -*I -/H -/H  -H
	X.6      3  A /A  /A   3   A  .  . -1  -E -/E -/E -1  -E  -G  -I -/G -/G  -G
	X.7      3 /A  A  -A  -3 -/A  .  .  1  /E   E  -E -1 -/E  /H  *I   H  -H -/H
	X.8      3 /A  A  -A  -3 -/A  .  .  1  /E   E  -E -1 -/E  /G   I   G  -G -/G
	X.9      3 /A  A   A   3  /A  .  . -1 -/E  -E  -E -1 -/E -/G  -I  -G  -G -/G
	X.10     3 /A  A   A   3  /A  .  . -1 -/E  -E  -E -1 -/E -/H -*I  -H  -H -/H
	X.11     5  5  5  -5  -5  -5 -1  1 -1  -1  -1   1  1   1   .   .   .   .   .
	X.12     5  5  5  -5  -5  -5  2 -2 -1  -1  -1   1  1   1   .   .   .   .   .
	X.13     5  5  5   5   5   5 -1 -1  1   1   1   1  1   1   .   .   .   .   .
	X.14     5  5  5   5   5   5  2  2  1   1   1   1  1   1   .   .   .   .   .
	X.15     6  B /B -/B  -6  -B  .  . -2   F  /F -/F  2  -F -/E  -1  -E   E  /E
	X.16     6  B /B  /B   6   B  .  .  2  -F -/F -/F  2  -F  /E   1   E   E  /E
	X.17     6 /B  B  -B  -6 -/B  .  . -2  /F   F  -F  2 -/F  -E  -1 -/E  /E   E
	X.18     6 /B  B   B   6  /B  .  .  2 -/F  -F  -F  2 -/F   E   1  /E  /E   E
	X.19     8  8  8  -8  -8  -8 -1  1  .   .   .   .  .   .   I   I   I  -I  -I
	X.20     8  8  8  -8  -8  -8 -1  1  .   .   .   .  .   .  *I  *I  *I -*I -*I
	X.21     8  8  8   8   8   8 -1 -1  .   .   .   .  .   . -*I -*I -*I -*I -*I
	X.22     8  8  8   8   8   8 -1 -1  .   .   .   .  .   .  -I  -I  -I  -I  -I
	X.23     9  9  9   9   9   9  .  .  1   1   1   1  1   1  -1  -1  -1  -1  -1
	X.24     9  9  9  -9  -9  -9  .  . -1  -1  -1   1  1   1   1   1   1  -1  -1
	X.25     9  C /C -/C  -9  -C  .  . -1  -E -/E  /E  1   E  /E   1   E  -E -/E
	X.26     9  C /C  /C   9   C  .  .  1   E  /E  /E  1   E -/E  -1  -E  -E -/E
	X.27     9 /C  C  -C  -9 -/C  .  . -1 -/E  -E   E  1  /E   E   1  /E -/E  -E
	X.28     9 /C  C   C   9  /C  .  .  1  /E   E   E  1  /E  -E  -1 -/E -/E  -E
	X.29    10 10 10  10  10  10  1  1 -2  -2  -2  -2 -2  -2   .   .   .   .   .
	X.30    10 10 10 -10 -10 -10  1 -1  2   2   2  -2 -2  -2   .   .   .   .   .
	X.31    15  D /D -/D -15  -D  .  .  1   E  /E -/E -1  -E   .   .   .   .   .
	X.32    15  D /D  /D  15   D  .  . -1  -E -/E -/E -1  -E   .   .   .   .   .
	X.33    15 /D  D  -D -15 -/D  .  .  1  /E   E  -E -1 -/E   .   .   .   .   .
	X.34    15 /D  D   D  15  /D  .  . -1 -/E  -E  -E -1 -/E   .   .   .   .   .
	
	      2   1   1   1   1   1   1   1  3   3   3   3  3   3  1  1
	      3   1   1   1   1   1   1   1  1   1   1   1  1   1  2  2
	      5   1   1   1   1   1   1   1  .   .   .   .  .   .  .  .
	
	         5a  5b 15c 15d 30c 10b 30d 4a 12a 12b 12c 4b 12d 3d 6h
	     2P  5b  5a 15b 15a 15a  5a 15b 2c  6f  6g  6g 2c  6f 3d 3d
	     3P  5b  5a  5a  5a 10a 10a 10a 4a  4a  4a  4b 4b  4b 1a 2a
	     5P  1a  1a  3b  3a  6b  2a  6a 4a 12b 12a 12d 4b 12c 3d 6h
	     7P  5b  5a 15a 15b 30a 10a 30b 4a 12a 12b 12c 4b 12d 3d 6h
	    11P  5a  5b 15d 15c 30d 10b 30c 4a 12b 12a 12d 4b 12c 3d 6h
	    13P  5b  5a 15a 15b 30a 10a 30b 4a 12a 12b 12c 4b 12d 3d 6h
	    17P  5b  5a 15b 15a 30b 10a 30a 4a 12b 12a 12d 4b 12c 3d 6h
	    19P  5a  5b 15c 15d 30c 10b 30d 4a 12a 12b 12c 4b 12d 3d 6h
	    23P  5b  5a 15b 15a 30b 10a 30a 4a 12b 12a 12d 4b 12c 3d 6h
	    29P  5a  5b 15d 15c 30d 10b 30c 4a 12b 12a 12d 4b 12c 3d 6h
	
	X.1       1   1   1   1   1   1   1  1   1   1   1  1   1  1  1
	X.2       1   1   1   1  -1  -1  -1 -1  -1  -1   1  1   1  1 -1
	X.3      -I -*I -/H  -H   H  *I  /H -1  -E -/E  /E  1   E  .  .
	X.4     -*I  -I -/G  -G   G   I  /G -1  -E -/E  /E  1   E  .  .
	X.5     -*I  -I -/G  -G  -G  -I -/G  1   E  /E  /E  1   E  .  .
	X.6      -I -*I -/H  -H  -H -*I -/H  1   E  /E  /E  1   E  .  .
	X.7     -*I  -I  -G -/G  /G   I   G -1 -/E  -E   E  1  /E  .  .
	X.8      -I -*I  -H -/H  /H  *I   H -1 -/E  -E   E  1  /E  .  .
	X.9      -I -*I  -H -/H -/H -*I  -H  1  /E   E   E  1  /E  .  .
	X.10    -*I  -I  -G -/G -/G  -I  -G  1  /E   E   E  1  /E  .  .
	X.11      .   .   .   .   .   .   .  1   1   1  -1 -1  -1  2 -2
	X.12      .   .   .   .   .   .   .  1   1   1  -1 -1  -1 -1  1
	X.13      .   .   .   .   .   .   . -1  -1  -1  -1 -1  -1  2  2
	X.14      .   .   .   .   .   .   . -1  -1  -1  -1 -1  -1 -1 -1
	X.15      1   1   E  /E -/E  -1  -E  .   .   .   .  .   .  .  .
	X.16      1   1   E  /E  /E   1   E  .   .   .   .  .   .  .  .
	X.17      1   1  /E   E  -E  -1 -/E  .   .   .   .  .   .  .  .
	X.18      1   1  /E   E   E   1  /E  .   .   .   .  .   .  .  .
	X.19     -I -*I -*I -*I  *I  *I  *I  .   .   .   .  .   . -1  1
	X.20    -*I  -I  -I  -I   I   I   I  .   .   .   .  .   . -1  1
	X.21    -*I  -I  -I  -I  -I  -I  -I  .   .   .   .  .   . -1 -1
	X.22     -I -*I -*I -*I -*I -*I -*I  .   .   .   .  .   . -1 -1
	X.23     -1  -1  -1  -1  -1  -1  -1  1   1   1   1  1   1  .  .
	X.24     -1  -1  -1  -1   1   1   1 -1  -1  -1   1  1   1  .  .
	X.25     -1  -1  -E -/E  /E   1   E -1  -E -/E  /E  1   E  .  .
	X.26     -1  -1  -E -/E -/E  -1  -E  1   E  /E  /E  1   E  .  .
	X.27     -1  -1 -/E  -E   E   1  /E -1 -/E  -E   E  1  /E  .  .
	X.28     -1  -1 -/E  -E  -E  -1 -/E  1  /E   E   E  1  /E  .  .
	X.29      .   .   .   .   .   .   .  .   .   .   .  .   .  1  1
	X.30      .   .   .   .   .   .   .  .   .   .   .  .   .  1 -1
	X.31      .   .   .   .   .   .   .  1   E  /E -/E -1  -E  .  .
	X.32      .   .   .   .   .   .   . -1  -E -/E -/E -1  -E  .  .
	X.33      .   .   .   .   .   .   .  1  /E   E  -E -1 -/E  .  .
	X.34      .   .   .   .   .   .   . -1 -/E  -E  -E -1 -/E  .  .
	
	A = 3*E(3)^2
	  = (-3-3*ER(-3))/2 = -3-3b3
	B = 6*E(3)^2
	  = -3-3*ER(-3) = -3-3i3
	C = 9*E(3)^2
	  = (-9-9*ER(-3))/2 = -9-9b3
	D = 15*E(3)^2
	  = (-15-15*ER(-3))/2 = -15-15b3
	E = E(3)^2
	  = (-1-ER(-3))/2 = -1-b3
	F = -2*E(3)^2
	  = 1+ER(-3) = 1+i3
	G = E(15)^11+E(15)^14
	H = E(15)^2+E(15)^8
	I = E(5)^2+E(5)^3
	  = (-1-ER(5))/2 = -1-b5
	
	gap> quit;