pgr4:=function() local z,g,sg,p; z:=FreeGroup("a","b"); g:=z/[z.1^3,z.2^3,z.1*z.2*z.1*z.2^2*z.1^2*z.2^2]; sg:=Subgroup(g,[g.1]); p:=Image(ActionHomomorphism(g,RightTransversal(g,sg),OnRight)); return p; end;
G4:=pgr4(); gap> Size(G4); 24 gap> N4:=NormalSubgroups(G4);; gap> NTSize(N4); Groesse des 1. Normalteilers: 1 Groesse des 2. Normalteilers: 2 Groesse des 3. Normalteilers: 8 Groesse des 4. Normalteilers: 24 gap> Centre(G4); Group([ ( 1, 7)( 2, 6)( 3, 8)( 4, 5) ]) gap> Size(Centre(G4)); 2 gap> IsSolvable(G4); true gap> CompositionSeries(G4); [ Group([ (2,3,5)(4,6,8), (1,4,7,5)(2,3,6,8), (1,8,7,3)(2,4,6,5), (1,7)(2,6)(3,8)(4,5) ]), Group([ (1,4,7,5)(2,3,6,8), (1,8,7,3)(2,4,6,5), (1,7)(2,6)(3,8)(4,5) ]), Group([ (1,8,7,3)(2,4,6,5), (1,7)(2,6)(3,8)(4,5) ]), Group([ (1,7)(2,6)(3,8)(4,5) ]), Group(()) ]
gap> ct4:=CharacterTable(G4); CharacterTable( Group([ (2,3,5)(4,6,8), (1,2,4)(5,7,6) ]) ) gap> Display(ct4); CT1 2 3 1 1 1 2 1 3 3 1 1 1 1 . 1 1 1a 3a 3b 6a 4a 6b 2a 2P 1a 3b 3a 3a 2a 3b 1a 3P 1a 1a 1a 2a 4a 2a 2a 5P 1a 3b 3a 6b 4a 6a 2a X.1 1 1 1 1 1 1 1 X.2 1 A /A /A 1 A 1 X.3 1 /A A A 1 /A 1 X.4 2 -1 -1 1 . 1 -2 X.5 2 -/A -A A . /A -2 X.6 2 -A -/A /A . A -2 X.7 3 . . . -1 . 3 A = E(3) = (-1+ER(-3))/2 = b3 gap> quit;