Eigenschaften der Gruppe G5 mit Hilfe von GAP



Permutationsdarstellung der G5

  
	pgr5:=function()
	local z,g,sg,p;
	z:=FreeGroup("a","b");
	g:=z/[z.1^3,z.2^3,z.1*z.2*z.1*z.2*z.1^2*z.2^2*z.1^2*z.2^2];
	sg:=Subgroup(g,[g.1]);
	p:=Image(ActionHomomorphism(g,RightTransversal(g,sg),OnRight));
	return p;
	end;
	

Ergebnisse

	G5:=pgr5();

	gap> Size(G5);
	72

	gap> N5:=NormalSubgroups(G5);;

	gap> NTSize(N5);
	Groesse des 1. Normalteilers: 1
	Groesse des 2. Normalteilers: 2
	Groesse des 3. Normalteilers: 3
	Groesse des 4. Normalteilers: 6
	Groesse des 5. Normalteilers: 8
	Groesse des 6. Normalteilers: 24
	Groesse des 7. Normalteilers: 24
	Groesse des 8. Normalteilers: 24
	Groesse des 9. Normalteilers: 24
	Groesse des 10. Normalteilers: 72
	
	gap> Centre(G5);
	Group(
	[ ( 1,20,24,22,19, 6)( 2,10,18,21,12, 9)( 3, 4,15,23,17,14)( 5, 7,13,16, 8,11
	     ) ])

	gap> Size(Centre(G5));
	6

	gap> IsSolvable(G5);
	true

	gap> CompositionSeries(G5);
	[ <permutation group of size 72 with 5 generators>, 
	  <permutation group of size 24 with 4 generators>, 
	  Group([ ( 1,13,22,11)( 2, 3,21,23)( 4,12,17,10)( 5,20,16,19)( 6, 7,24, 8)
	        ( 9,14,18,15), ( 1,15,22,14)( 2,16,21, 5)( 3,20,23,19)( 4,24,17, 6)
	        ( 7,10, 8,12)( 9,13,18,11), ( 1,22)( 2,21)( 3,23)( 4,17)( 5,16)( 6,24)
	        ( 7, 8)( 9,18)(10,12)(11,13)(14,15)(19,20) ]), 
	  Group([ ( 1,15,22,14)( 2,16,21, 5)( 3,20,23,19)( 4,24,17, 6)( 7,10, 8,12)
	        ( 9,13,18,11), ( 1,22)( 2,21)( 3,23)( 4,17)( 5,16)( 6,24)( 7, 8)
	        ( 9,18)(10,12)(11,13)(14,15)(19,20) ]), 
	  Group([ ( 1,22)( 2,21)( 3,23)( 4,17)( 5,16)( 6,24)( 7, 8)( 9,18)(10,12)
	        (11,13)(14,15)(19,20) ]), Group(()) ]
	

Charaktertafel

	gap> ct5:=CharacterTable(G5);
	CharacterTable( Group(
	[ ( 2, 3, 5)( 4, 7,10)( 8,12,17)( 9,14,11)(13,18,15)(16,21,23), 
	  ( 1, 2, 4)( 3, 6, 9)( 5, 8,13)( 7,11,16)(10,15,20)(12,14,19)(17,22,21)
	    (18,23,24) ]) )

	gap> Display(ct5);
	CT1

	      2  3   1   1   1   2  1   1  1   2  3  1   1  1  2  1   1  1   3  3  3
	      3  2   2   2   2   1  2   2  2   1  2  2   2  2  1  2   2  2   2  2  2

	        1a  3a  3b  3c 12a 6a  3d 6b 12b 6c 6d  3e 6e 4a 6f  3f 6g  3g 6h 2a
	     2P 1a  3b  3a  3d  6c 3e  3c 3f  6h 3g 3c  3f 3a 2a 3b  3e 3d  3h 3h 1a
	     3P 1a  1a  1a  1a  4a 2a  1a 2a  4a 2a 2a  1a 2a 4a 2a  1a 2a  1a 2a 2a
	     5P 1a  3b  3a  3d 12b 6b  3c 6a 12a 6h 6g  3f 6f 4a 6e  3e 6d  3h 6c 2a
	     7P 1a  3a  3b  3c 12a 6a  3d 6b 12b 6c 6d  3e 6e 4a 6f  3f 6g  3g 6h 2a
	    11P 1a  3b  3a  3d 12b 6b  3c 6a 12a 6h 6g  3f 6f 4a 6e  3e 6d  3h 6c 2a

	X.1      1   1   1   1   1  1   1  1   1  1  1   1  1  1  1   1  1   1  1  1
	X.2      1   A  /A   1   A /A   1  A  /A /A  1   A /A  1  A  /A  1   A  A  1
	X.3      1  /A   A   1  /A  A   1 /A   A  A  1  /A  A  1 /A   A  1  /A /A  1
	X.4      1   1   1   A   A  A  /A /A  /A /A /A  /A  1  1  1   A  A   A  A  1
	X.5      1   A  /A   A  /A  1  /A  1   A  A /A   1 /A  1  A   1  A  /A /A  1
	X.6      1  /A   A   A   1 /A  /A  A   1  1 /A   A  A  1 /A  /A  A   1  1  1
	X.7      1   1   1  /A  /A /A   A  A   A  A  A   A  1  1  1  /A /A  /A /A  1
	X.8      1   A  /A  /A   1  A   A /A   1  1  A  /A /A  1  A   A /A   1  1  1
	X.9      1  /A   A  /A   A  1   A  1  /A /A  A   1  A  1 /A   1 /A   A  A  1
	X.10     2  -1  -1  -1   .  1  -1  1   . -2  1  -1  1  .  1  -1  1   2 -2 -2
	X.11     2  -1  -1 -/A   . /A  -A  A   .  B  A  -A  1  .  1 -/A /A -/B /B -2
	X.12     2  -A -/A -/A   .  A  -A /A   . -2  A -/A /A  .  A  -A /A   2 -2 -2
	X.13     2 -/A  -A -/A   .  1  -A  1   . /B  A  -1  A  . /A  -1 /A  -B  B -2
	X.14     2  -A -/A  -1   . /A  -1  A   . /B  1  -A /A  .  A -/A  1  -B  B -2
	X.15     2 -/A  -A  -1   .  A  -1 /A   .  B  1 -/A  A  . /A  -A  1 -/B /B -2
	X.16     2  -1  -1  -A   .  A -/A /A   . /B /A -/A  1  .  1  -A  A  -B  B -2
	X.17     2  -A -/A  -A   .  1 -/A  1   .  B /A  -1 /A  .  A  -1  A -/B /B -2
	X.18     2 -/A  -A  -A   . /A -/A  A   . -2 /A  -A  A  . /A -/A  A   2 -2 -2
	X.19     3   .   .   .  -1  .   .  .  -1  3  .   .  . -1  .   .  .   3  3  3
	X.20     3   .   .   .  -A  .   .  . -/A  C  .   .  . -1  .   .  .  /C /C  3
	X.21     3   .   .   . -/A  .   .  .  -A /C  .   .  . -1  .   .  .   C  C  3
	
	      2   3
	      3   2
	
	         3h
	     2P  3g
	     3P  1a
	     5P  3g
	     7P  3h
	    11P  3g
	
	X.1       1
	X.2      /A
	X.3       A
	X.4      /A
	X.5       A
	X.6       1
	X.7       A
	X.8       1
	X.9      /A
	X.10      2
	X.11     -B
	X.12      2
	X.13    -/B
	X.14    -/B
	X.15     -B
	X.16    -/B
	X.17     -B
	X.18      2
	X.19      3
	X.20      C
	X.21     /C
	
	A = E(3)
	  = (-1+ER(-3))/2 = b3
	B = -2*E(3)
	  = 1-ER(-3) = 1-i3
	C = 3*E(3)^2
	  = (-3-3*ER(-3))/2 = -3-3b3
	
	gap> quit;