Eigenschaften der Gruppe G6 mit Hilfe von GAP



Permutationsdarstellung der G6

	pgr6:=function()
	local z,g,sg,p;
	z:=FreeGroup("a","b");
	g:=z/[z.1^3,z.2^2,z.1*z.2*z.1*z.2*z.1*z.2*z.1^2*z.2*z.1^2*z.2*z.1^2*z.2];
	sg:=Subgroup(g,[g.1]);
	p:=Image(ActionHomomorphism(g,RightTransversal(g,sg),OnRight));
	return p;
	end;
	

Ergebnisse

	G6:=pgr6();

	gap> Size(G6);
	48

	gap> N6:=NormalSubgroups(G6);;

	gap> NTSize(N6);
	Groesse des 1. Normalteilers: 1
	Groesse des 2. Normalteilers: 2
	Groesse des 3. Normalteilers: 4
	Groesse des 4. Normalteilers: 8
	Groesse des 5. Normalteilers: 16
	Groesse des 6. Normalteilers: 24
	Groesse des 7. Normalteilers: 48

	gap> Centre(G6);
	Group([ ( 1,14,16,10)( 2,11,15, 7)( 3, 6,12, 9)( 4, 8,13, 5) ])

	gap> Size(Centre(G6));
	4

	gap> IsSolvable(G6);
	true

	gap> CompositionSeries(G6);
	[ Group([ ( 1, 2)( 3, 5)( 4, 6)( 7,10)( 8,12)( 9,13)(11,14)(15,16), 
	      ( 2, 3, 4)( 5, 7, 9)( 6, 8,11)(12,13,15), 
	      ( 1, 8,16, 5)( 2, 3,15,12)( 4,14,13,10)( 6, 7, 9,11), 
	      ( 1, 6,16, 9)( 2,13,15, 4)( 3,14,12,10)( 5, 7, 8,11), 
	      ( 1,16)( 2,15)( 3,12)( 4,13)( 5, 8)( 6, 9)( 7,11)(10,14) ]), 
	  Group([ ( 2, 3, 4)( 5, 7, 9)( 6, 8,11)(12,13,15), 
	      ( 1, 8,16, 5)( 2, 3,15,12)( 4,14,13,10)( 6, 7, 9,11), 
	      ( 1, 6,16, 9)( 2,13,15, 4)( 3,14,12,10)( 5, 7, 8,11), 
	      ( 1,16)( 2,15)( 3,12)( 4,13)( 5, 8)( 6, 9)( 7,11)(10,14) ]), 
	  Group([ ( 1, 8,16, 5)( 2, 3,15,12)( 4,14,13,10)( 6, 7, 9,11), 
	      ( 1, 6,16, 9)( 2,13,15, 4)( 3,14,12,10)( 5, 7, 8,11), 
	      ( 1,16)( 2,15)( 3,12)( 4,13)( 5, 8)( 6, 9)( 7,11)(10,14) ]), 
	  Group([ ( 1, 6,16, 9)( 2,13,15, 4)( 3,14,12,10)( 5, 7, 8,11), 
	      ( 1,16)( 2,15)( 3,12)( 4,13)( 5, 8)( 6, 9)( 7,11)(10,14) ]), 
	  Group([ ( 1,16)( 2,15)( 3,12)( 4,13)( 5, 8)( 6, 9)( 7,11)(10,14) ]), 
	  Group(()) ]
	

Charaktertafel

	gap> ct6:=CharacterTable(G6);
	CharacterTable( Group([ ( 2, 3, 4)( 5, 7, 9)( 6, 8,11)(12,13,15), 
	  ( 1, 2)( 3, 5)( 4, 6)( 7,10)( 8,12)( 9,13)(11,14)(15,16) ]) )
	
	gap> Display(ct6);
	CT1
	
	      2  4   2   2  3   2   2  2  3  2  4   2   2  4  4
	      3  1   1   1  .   1   1  1  .  1  1   1   1  1  1

	        1a  3a  3b 2a 12a 12b 6a 4a 6b 4b 12c 12d 4c 2b
	     2P 1a  3b  3a 1a  6a  6b 3a 2b 3b 2b  6a  6b 2b 1a
	     3P 1a  1a  1a 2a  4b  4c 2b 4a 2b 4c  4c  4b 4b 2b
	     5P 1a  3b  3a 2a 12d 12c 6b 4a 6a 4b 12b 12a 4c 2b
	     7P 1a  3a  3b 2a 12c 12d 6a 4a 6b 4c 12a 12b 4b 2b
	    11P 1a  3b  3a 2a 12b 12a 6b 4a 6a 4c 12d 12c 4b 2b

	X.1      1   1   1  1   1   1  1  1  1  1   1   1  1  1
	X.2      1   1   1 -1  -1  -1  1  1  1 -1  -1  -1 -1  1
	X.3      1   A  /A  1   A  /A /A  1  A  1   A  /A  1  1
	X.4      1   A  /A -1  -A -/A /A  1  A -1  -A -/A -1  1
	X.5      1  /A   A  1  /A   A  A  1 /A  1  /A   A  1  1
	X.6      1  /A   A -1 -/A  -A  A  1 /A -1 -/A  -A -1  1
	X.7      2 -/A  -A  .   B  /B  A  . /A  D  -B -/B -D -2
	X.8      2 -/A  -A  .  -B -/B  A  . /A -D   B  /B  D -2
	X.9      2  -1  -1  .   C  -C  1  .  1  D  -C   C -D -2
	X.10     2  -1  -1  .  -C   C  1  .  1 -D   C  -C  D -2
	X.11     2  -A -/A  . -/B  -B /A  .  A  D  /B   B -D -2
	X.12     2  -A -/A  .  /B   B /A  .  A -D -/B  -B  D -2
	X.13     3   .   . -1   .   .  . -1  .  3   .   .  3  3
	X.14     3   .   .  1   .   .  . -1  . -3   .   . -3  3
	
	A = E(3)
	  = (-1+ER(-3))/2 = b3
	B = -E(12)^11
	C = -E(4)
	  = -ER(-1) = -i
	D = -2*E(4)
	  = -2*ER(-1) = -2i
	
	gap> quit;