Eigenschaften der Gruppe G9 mit Hilfe von GAP



Permutationsdarstellung der G9

	pgr9:=function()
	local z,g,sg,p;
	z:=FreeGroup("a","b");
	g:=z/[z.1^4,z.2^2,z.1*z.2*z.1*z.2*z.1*z.2*z.1^3*z.2*z.1^3*z.2*z.1^3*z.2];
	sg:=Subgroup(g,[g.1]);
	p:=Image(ActionHomomorphism(g,RightTransversal(g,sg),OnRight));
	return p;
	end;
	

Ergebnisse

	G9:=pgr9();

	gap> Size(G9);
	192

	gap> N9:=NormalSubgroups(G9);;

	gap> NTSize(N9);
	Groesse des 1. Normalteilers: 1
	Groesse des 2. Normalteilers: 2
	Groesse des 3. Normalteilers: 4
	Groesse des 4. Normalteilers: 8
	Groesse des 5. Normalteilers: 8
	Groesse des 6. Normalteilers: 16
	Groesse des 7. Normalteilers: 24
	Groesse des 8. Normalteilers: 32
	Groesse des 9. Normalteilers: 48
	Groesse des 10. Normalteilers: 48
	Groesse des 11. Normalteilers: 48
	Groesse des 12. Normalteilers: 96
	Groesse des 13. Normalteilers: 96
	Groesse des 14. Normalteilers: 96
	Groesse des 15. Normalteilers: 192
	
	gap> Centre(G9);
	Group(
	[ ( 1,31,44,48,41,46,30,12)( 2,24,38,47,33,43,23, 8)( 3, 9,25,39,40,34,29,11)
	    ( 4,13,26,42,21,36,15,16)( 5, 6,18,32,45,27,37,17)( 7,19,20,35,14,28,10,22
	     ) ])
	
	gap> Size(Centre(G9));
	8
	gap> IsSolvable(G9);
	true
	
	gap> CompositionSeries(G9);
	[ <permutation group of size 192 with 7 generators>, 
	  <permutation group of size 96 with 6 generators>, 
	  <permutation group of size 48 with 5 generators>, 
	  <permutation group of size 24 with 4 generators>, 
	  <permutation group of size 8 with 3 generators>, 
	  <permutation group of size 4 with 2 generators>, 
	  Group([ ( 1,41)( 2,33)( 3,40)( 4,21)( 5,45)( 6,27)( 7,14)( 8,47)( 9,34)
	        (10,20)(11,39)(12,48)(13,36)(15,26)(16,42)(17,32)(18,37)(19,28)(22,35)
	        (23,38)(24,43)(25,29)(30,44)(31,46) ]), Group(()) ]
	

Charaktertafel

	gap> ct9:=CharacterTable(G9);
	CharacterTable( <permutation group of size 192 with 2 generators> )
	
	gap> Display(ct9);
	CT1
	
	      2  6   5  5   5  4   3  5   3   3  4  3  5  4   3   6  5  5  4   3  5
	      3  1   .  .   .  .   1  .   1   1  .  1  .  .   1   1  .  .  .   1  .
	
	        1a  4a 2a  4b 2b 24a 8a 24b 12a 8b 6a 4c 8c 12b  8d 8e 8f 4d 24c 8g
	     2P 1a  2a 1a  2a 1a 12a 4c 12b  6a 4e 3a 2c 4h  6a  4e 4c 4e 2c 12a 4h
	     3P 1a  4b 2a  4a 2b  8d 8h  8j  4e 8c 2c 4c 8b  4h  8k 8e 8g 4d  8l 8f
	     5P 1a  4a 2a  4b 2b 24c 8h 24d 12a 8b 6a 4c 8c 12b  8l 8i 8f 4d 24a 8g
	     7P 1a  4b 2a  4a 2b 24b 8a 24a 12b 8c 6a 4c 8b 12a  8j 8i 8g 4d 24d 8f
	    11P 1a  4b 2a  4a 2b 24d 8h 24c 12b 8c 6a 4c 8b 12a  8k 8e 8g 4d 24b 8f
	    13P 1a  4a 2a  4b 2b 24c 8h 24d 12a 8b 6a 4c 8c 12b  8l 8i 8f 4d 24a 8g
	    17P 1a  4a 2a  4b 2b 24a 8a 24b 12a 8b 6a 4c 8c 12b  8d 8e 8f 4d 24c 8g
	    19P 1a  4b 2a  4a 2b 24d 8h 24c 12b 8c 6a 4c 8b 12a  8k 8e 8g 4d 24b 8f
	    23P 1a  4b 2a  4a 2b 24b 8a 24a 12b 8c 6a 4c 8b 12a  8j 8i 8g 4d 24d 8f
	
	X.1      1   1  1   1  1   1  1   1   1  1  1  1  1   1   1  1  1  1   1  1
	X.2      1   1  1   1 -1  -1 -1  -1   1  1  1  1  1   1  -1 -1 -1 -1  -1 -1
	X.3      1  -1  1  -1  1  -1  1  -1   1 -1  1  1 -1   1  -1  1 -1  1  -1 -1
	X.4      1  -1  1  -1 -1   1 -1   1   1 -1  1  1 -1   1   1 -1  1 -1   1  1
	X.5      1   A -1  -A  1   A -1  -A  -1 -A  1  1  A  -1  -A  1  A -1   A -A
	X.6      1   A -1  -A -1  -A  1   A  -1 -A  1  1  A  -1   A -1 -A  1  -A  A
	X.7      1  -A -1   A  1  -A -1   A  -1  A  1  1 -A  -1   A  1 -A -1  -A  A
	X.8      1  -A -1   A -1   A  1  -A  -1  A  1  1 -A  -1  -A -1  A  1   A -A
	X.9      2   .  2   .  .   1  .   1  -1  . -1  2  .  -1  -2  . -2  .   1 -2
	X.10     2   .  2   .  .  -1  .  -1  -1  . -1  2  .  -1   2  .  2  .  -1  2
	X.11     2   . -2   .  .   A  .  -A   1  . -1  2  .   1   E  . -E  .   A  E
	X.12     2   . -2   .  .  -A  .   A   1  . -1  2  .   1  -E  .  E  .  -A -E
	X.13     2   B  .  /B  .   C  D  /C   A  .  1  .  .  -A   F  I  .  .  -C  .
	X.14     2   B  .  /B  .  -C -D -/C   A  .  1  .  .  -A  -F -I  .  .   C  .
	X.15     2  /B  .   B  . -/C -D  -C  -A  .  1  .  .   A -/F  I  .  .  /C  .
	X.16     2  /B  .   B  .  /C  D   C  -A  .  1  .  .   A  /F -I  .  . -/C  .
	X.17     2 -/B  .  -B  . -/C  D  -C  -A  .  1  .  .   A -/F -I  .  .  /C  .
	X.18     2 -/B  .  -B  .  /C -D   C  -A  .  1  .  .   A  /F  I  .  . -/C  .
	X.19     2  -B  . -/B  .   C -D  /C   A  .  1  .  .  -A   F -I  .  .  -C  .
	X.20     2  -B  . -/B  .  -C  D -/C   A  .  1  .  .  -A  -F  I  .  .   C  .
	X.21     3  -1 -1  -1 -1   .  1   .   .  1  . -1  1   .  -3  1  1 -1   .  1
	X.22     3  -1 -1  -1  1   . -1   .   .  1  . -1  1   .   3 -1 -1  1   . -1
	X.23     3   1 -1   1 -1   .  1   .   . -1  . -1 -1   .   3  1 -1 -1   . -1
	X.24     3   1 -1   1  1   . -1   .   . -1  . -1 -1   .  -3 -1  1  1   .  1
	X.25     3  -A  1   A -1   . -1   .   . -A  . -1  A   .   G  1  A  1   . -A
	X.26     3  -A  1   A  1   .  1   .   . -A  . -1  A   .  -G -1 -A -1   .  A
	X.27     3   A  1  -A -1   . -1   .   .  A  . -1 -A   .  -G  1 -A  1   .  A
	X.28     3   A  1  -A  1   .  1   .   .  A  . -1 -A   .   G -1  A -1   . -A
	X.29     4   .  .   .  . -/C  .  -C   A  . -1  .  .  -A   H  .  .  .  /C  .
	X.30     4   .  .   .  .   C  .  /C  -A  . -1  .  .   A -/H  .  .  .  -C  .
	X.31     4   .  .   .  .  -C  . -/C  -A  . -1  .  .   A  /H  .  .  .   C  .
	X.32     4   .  .   .  .  /C  .   C   A  . -1  .  .  -A  -H  .  .  . -/C  .
	
	      2   3  5  5  6   5   6  3   5  6  6   6   6
	      3   1  .  .  1   .   1  1   .  1  1   1   1
	
	        24d 8h 8i 4e  4f  8j 3a  4g 2c 4h  8k  8l
	     2P 12b 4c 4c 2c  2a  4h 3a  2a 1a 2c  4h  4e
	     3P  8k 8a 8i 4h  4g  8l 1a  4f 2c 4e  8d  8j
	     5P 24b 8a 8e 4e  4f  8k 3a  4g 2c 4h  8j  8d
	     7P 24c 8h 8e 4h  4g  8d 3a  4f 2c 4e  8l  8k
	    11P 24a 8a 8i 4h  4g  8l 3a  4f 2c 4e  8d  8j
	    13P 24b 8a 8e 4e  4f  8k 3a  4g 2c 4h  8j  8d
	    17P 24d 8h 8i 4e  4f  8j 3a  4g 2c 4h  8k  8l
	    19P 24a 8a 8i 4h  4g  8l 3a  4f 2c 4e  8d  8j
	    23P 24c 8h 8e 4h  4g  8d 3a  4f 2c 4e  8l  8k
	
	X.1       1  1  1  1   1   1  1   1  1  1   1   1
	X.2      -1 -1 -1  1   1  -1  1   1  1  1  -1  -1
	X.3      -1  1  1  1  -1  -1  1  -1  1  1  -1  -1
	X.4       1 -1 -1  1  -1   1  1  -1  1  1   1   1
	X.5      -A -1  1 -1  -A   A  1   A  1 -1   A  -A
	X.6       A  1 -1 -1  -A  -A  1   A  1 -1  -A   A
	X.7       A -1  1 -1   A  -A  1  -A  1 -1  -A   A
	X.8      -A  1 -1 -1   A   A  1  -A  1 -1   A  -A
	X.9       1  .  .  2   .  -2 -1   .  2  2  -2  -2
	X.10     -1  .  .  2   .   2 -1   .  2  2   2   2
	X.11     -A  .  . -2   .  -E -1   .  2 -2  -E   E
	X.12      A  .  . -2   .   E -1   .  2 -2   E  -E
	X.13    -/C -D -I  E -/B  /F -1  -B -2 -E -/F  -F
	X.14     /C  D  I  E -/B -/F -1  -B -2 -E  /F   F
	X.15      C  D -I -E  -B  -F -1 -/B -2  E   F  /F
	X.16     -C -D  I -E  -B   F -1 -/B -2  E  -F -/F
	X.17      C -D  I -E   B  -F -1  /B -2  E   F  /F
	X.18     -C  D -I -E   B   F -1  /B -2  E  -F -/F
	X.19    -/C  D  I  E  /B  /F -1   B -2 -E -/F  -F
	X.20     /C -D -I  E  /B -/F -1   B -2 -E  /F   F
	X.21      .  1  1  3  -1  -3  .  -1  3  3  -3  -3
	X.22      . -1 -1  3  -1   3  .  -1  3  3   3   3
	X.23      .  1  1  3   1   3  .   1  3  3   3   3
	X.24      . -1 -1  3   1  -3  .   1  3  3  -3  -3
	X.25      . -1  1 -3   A  -G  .  -A  3 -3  -G   G
	X.26      .  1 -1 -3   A   G  .  -A  3 -3   G  -G
	X.27      . -1  1 -3  -A   G  .   A  3 -3   G  -G
	X.28      .  1 -1 -3  -A  -G  .   A  3 -3  -G   G
	X.29      C  .  .  J   .  /H  1   . -4 -J -/H  -H
	X.30    -/C  .  . -J   .  -H  1   . -4  J   H  /H
	X.31     /C  .  . -J   .   H  1   . -4  J  -H -/H
	X.32     -C  .  .  J   . -/H  1   . -4 -J  /H   H
	
	A = E(4)
	  = ER(-1) = i
	B = -1-E(4)
	  = -1-ER(-1) = -1-i
	C = -E(8)^3
	D = -E(8)+E(8)^3
	  = -ER(2) = -r2
	E = 2*E(4)
	  = 2*ER(-1) = 2i
	F = 2*E(8)
	G = 3*E(4)
	  = 3*ER(-1) = 3i
	H = -4*E(8)^3
	I = -E(8)-E(8)^3
	  = -ER(-2) = -i2
	J = -4*E(4)
	  = -4*ER(-1) = -4i
	
	gap> quit;