Mo Logo [Home] [Lexikon] [Aufgaben] [Tests] [Kurse] [Begleitmaterial] [Hinweise] [Mitwirkende] [Publikationen]

Mathematik-Online-Kurs: Prüfungsvorbereitung HM 1/2 SS08 - Probeklausuren

Kurzklausur 20 Minuten


[vorangehende Seite] [nachfolgende Seite] [Gesamtverzeichnis][Seitenübersicht]


Ein Link zu weiteren Varianten dieses Test befindet sich am Seitenende.
Aufgabe 1:
a)
Gegeben sind die komplexen Zahlen $ z_1=4+3\, \mathrm{i}$ und $ z_2=2-\, \mathrm{i}$. Berechnen Sie:

$\displaystyle a = z_1z_2\,,\quad b = z_1/z_2\,. $

b)
Gegeben ist $ z=-\sqrt{3}-\, \mathrm{i}$. Geben Sie die Polarkoordinatendarstellung $ r(\, \mathrm{cos}(\varphi)+\,
\mathrm{i}\, \mathrm{sin}(\varphi))$ mit $ 0 \leq r$ und $ 0 \leq
\varphi < 2\pi$ für

$\displaystyle c= z\,,\quad d = z^{19}$

an.

Antwort:

a)

$ a=$ + $ \, \mathrm{i}$

$ b=$ + $ \, \mathrm{i}$

b)
$ c=$ $ (\, \mathrm{cos}($ $ /$$ \, \pi)$ $ +\, \mathrm{i}\, \mathrm{sin}($ $ /$$ \, \pi))$

$ d=$ $ (\, \mathrm{cos}($ $ /$$ \, \pi)$ $ +\, \mathrm{i}\, \mathrm{sin}($ $ /$$ \, \pi))$

(Brüche ganzzahlig gekürzt mit positivem Nenner.)


Aufgabe 2:
Bestimmen Sie die euklidische Normalform der Quadrik $ Q: \left\{ x\in \mathbb{R}^2 \vert x^{{\operatorname t}}Ax+2a^{{\operatorname t}}x+c=0 \right\}$ mit

$ A= \left( \begin{array}{rr}
-1&0\\ 0&3
\end{array} \right)$          $ a= \left( \begin{array}{r}
-2\\ -3
\end{array} \right)$          $ c=-1$

und geben Sie den Ursprung $ P$ des Koordinatensystems an in dem die Quadrik diese Form hat.

Antwort:

$ z_1^2$ + $ z_2^2=0$          $ P= \left(\rule{0pt}{2ex}\right.$ , $ \left.\rule{0pt}{2ex}\right)$
   
[Andere Variante]

[vorangehende Seite] [nachfolgende Seite] [Gesamtverzeichnis][Seitenübersicht]

  automatisch erstellt am 14.7.2008